Abstract:
An automated system for rapid sequential photometric analysis of a collection of double fluorochrome stained lymphocyte specimens, useful for antibody screening or lymphocytotoxicity analysis. The specimens are sequentially alternately irradiated with light of two distinguishable wavelengths, producing fluorescence at two distinguishable wavelengths. The fluorescent emission light intensity for each irradiation of each specimen is measured using a photometer and computer. The computer controls the synchronization of the irradiation through alternately selected condenser sets with the sequential movement of specimens Into the optical path of the irradiating and detected light, and calculates the ratio of the light intensities emitted from each specimen at the two selected fluorescent light wavelengths. These ratios are compared against a control ratio (for lymphocytotoxicity analysis) to classify the specimen. Also described is a method of preparing specimens for such analysis, which requires that a complement be added to the first staining solution after the latter is applied to the specimens, then this combination agitated, and then the second staining solution added and the specimen incubated.
Abstract:
A tip for use in an optical detection system to analyze an analyte in a fluid sample drawn into the tip, using light reflected from a detection surface inside the tip that the analyte binds to, comprising a first detection surface and a second detection surface located in a same flow path with no controllable valve separating them, wherein the first and second detection surfaces have different surface chemistries.
Abstract:
Detection arrangement and method for detecting presence of a residue in a sample by determining color values of the sample, associated with the L*a*b color model, where a value of a composite parameter Z is calculated as follows: Z = w L + w a a + w b b where w L , w a , and w b are weighting factors having a value depending on said residue and said sample, and a determination is made whether or not said sample comprises more or less than a predetermined amount of said residue in dependence on said value of said composite parameter Z. In a preferred embodiment, the arrangement is used to detect antibiotic residues, e.g. penicillin-G, in food products, e.g. milk, or body fluids, e.g. blood, urine.
Abstract:
Disclosed herein are methods and systems for distinguishing a nuisance gas from a target gas or group of target gases, which involve a configuration of a light source (120) and paper tape (110) such that light (112) emitted from the light source (120) can reflect off the paper tape (110). The light (112) can emit in at least three wavelengths selected from red, green, blue, and ultra-violet wavelengths, and pattern recognition can be used to identify and/or distinguish the nuisance gas from the target gas or from the group of target gases.
Abstract:
A tip for use in an optical detection system to analyze an analyte in a fluid sample drawn into the tip, using light reflected from a detection surface inside the tip that the analyte binds to, comprising a first detection surface and a second detection surface located in a same flow path with no controllable valve separating them, wherein the first and second detection surfaces have different surface chemistries.
Abstract:
An optical density measuring system has a light projecting system which includes a light source and an optical fiber bundle which transmits light emitted from the light source to the specimen. The optical fiber bundle consists of first and second portions which are connected by an optical fiber connector. The connector includes a first optical fiber plug which holds the light emanating end face of the first portion of the bundle, a second optical fiber plug which holds the light incident end face of the second portion of the bundle, a plug holder which can be mated with both the first and second optical fiber plugs in such a manner that the light emanating end face of the first portion and the light incident end face of the second portion are closely opposed to each other, and an optical filter which transmits only light having a selected wavelength and is mounted on the plug holder in a position in which the optical filter is interposed between the light emanating end face of the first portion and the light incident end face of the second portion.
Abstract:
An apparatus to evaluate objectively the concentration and motility of particles suspended in a sample of liquid, and particularly to an apparatus to solve objectively the problem of evaluating these important characteristics in a very simple manner and in a short time by exploiting the Doppler effect. The sample to be examined is subjected to one of the two sub-beams resulting from the suitable division of a coherent monochromatic light beam emitted by a polarized LASER, while the other sub-beam is considered as a reference light sub-beam. Because of the very little difference between the frequencies of the original and scattered light a beat is originated in the rejoined two sub-beams which is dependent on the characteristics of the examined sample. Electromechanical means are provided to position automatically and sequentially a set of test-pieces to be examined according to a program and a data processor is provided to process the output signal of the rejoined sub-beams, so that the desired evaluations are displayed on a monitor or printed as alpha-numerical results and/or graphic diagrams. All of the mechanical, electromechanical, optical and data processor members are enclosed within a single box-container as component members of the apparatus.
Abstract:
There is provided a data processing apparatus including: a data determination portion that specifies, in each of first and second light intensity distribution data, an analysis range corresponding to a storage area for storing a detection target, the first and second light intensity distribution data being acquired on the basis of light emitted from first and light sources to a detection area; and a mode selection portion that selects an operation mode of the data determination portion. The mode selection portion selects one of a first mode in which the data determination portion specifies the analysis range in each of the first light intensity distribution data and the second light intensity distribution data, and a second mode in which the data determination portion specifies the analysis range in the second light intensity distribution data on the basis of information on the analysis range of the first light intensity distribution data.