Abstract:
L'invention concerne un dispositif d'analyse biologique (100) par mesure de photoluminescence dans un fluide présent dans une cuve de mesure (111). Ce dispositif (100) comprend au moins deux sources lumineuses (121,131) aptes à émettre dans des zones spectrales différentes convenant pour la réalisation de mesures, respectivement, d'absorption et de fluorescence, et un dispositif de détection (140), comprenant un détecteur (141), un système optique (142) et des moyens de filtrages (144), ces trois derniers éléments étant mutualisés, selon l'invention, pour permettre la mesure des signaux d'absorption et/ou de fluorescence. Selon l'invention, le détecteur (141) est en outre configurable en gain interne afin de permettre de réaliser les mesures de fluorescence et les mesures d'absorption de manière séquentielle.
Abstract:
Die Erfindung bezieht sich auf eine Messvorrichtung (10) sowie ein entsprechendes Messverfahren zur Messung einer Konzentration von gas- und/oder aerosolförmigen Komponenten eines Gasgemisches für einen Reaktionsträger (14), mit einem Strömungskanal (42), der eine Reaktionskammer (46) mit einem Reaktionsstoff (48) bildet, welcher ausgebildet ist, um mit zumindest einer zu messenden Komponente des Gasgemisches oder einem Reaktionsprodukt der zu messenden Komponente eine optisch detektierbare Reaktion einzugehen. Die Messvorrichtung (12) umfasst eine Gasförderbaugruppe (2) mit einer Gasfördereinrichtung (28) zur Förderung des Gasgemisches durch den Gasabflusskanal (18), und eine Detektionsbaugruppe (3) mit einer Beleuchtungseinrichtung (37) zur Beleuchtung der Reaktionskammer (46) des Reaktionsträgers (14), einem optischen Sensor (38) zur Erfassung der optisch detektierbaren Reaktion, und eine Auswertungseinheit (4) zu Auswertung der vom optischen Sensor erfassten Daten der optisch detektierbaren Reaktion und Bestimmung einer Konzentration der Komponente des Gasgemisches. Die Detektionsbaugruppe (3) ist ausgebildet, um eine Geschwindigkeit einer sich in Strömungsrichtung in der Reaktionskammer (46) ausbreitenden Reaktionsfront (6) zu erfassen und aus der Geschwindigkeit der Reaktionsfront (6) eine vorläufige Konzentration zu bestimmen.
Abstract:
A photo-detector 122 generated signal 125 is measured as a sample set 192 comprising a long signal and a short signal. The short signal is scaled to the value of the long signal if the long signal exceeds a dynamic range 131 associated with the photo detector 122. In one embodiment, the short signal is obtained during a short time interval that is at the approximate middle of a long time interval such that the short and long intervals share a common median time value 194. Given such symmetry, an approximately linear signal 190 yields a proportionality parameter between the long and short signals thereby allowing the short signal to be scaled. The proportionality parameter facilitates determination of an integration independent component of the photo detector signal that should be removed from the measured long and short signals before scaling. A plurality of sample sets 260 can also be processed such that each sample set overlaps with its neighboring sample set, thereby increasing the effective number of sample sets.
Abstract:
Assays (100) may be performed with a luminometer (400) having a chassis (405) that may include a reaction vessel chamber (610). The luminometer (400) may also include a light passage (640) that intersects the reaction vessel chamber (610). The luminometer (400) may also include a cap (415) that, when in a closed configuration, prevents light emitted by external sources from entering the reaction vessel chamber (610) and from entering the light passage (640). The cap (415) may provide access to the reaction vessel chamber (610) when in an open configuration. The luminometer (400) may also include a calibration light source (460) optically coupled to one end of the light passage (640) and a light detector (630) optically coupled to another end of the light passage (640). The light detector (630) may include a sensing element for receiving light from the light passage (640).
Abstract:
A luminometer (400) includes a light detector (630) configured to sense photons (135). The luminometer (400) includes an analog circuit (915a) configured to provide an analog signal (965) based on the photons (135) emitted from assay reactions over a time period and a counter circuit (915b) configured to provide a photon count (970) based on the photons (135) emitted from the assay reactions over the time period. The luminometer (400) includes a luminometer controller (905) configured to, in response to an analog signal value of the analog signal (965) being greater than a predetermined value, determine and report a measurement value of the photons (135) emitted from the assay reactions over the time period based on the analog signal value of the analog signal (965) and a linear function (1010). Optionally, the linear function (1010) is derived from a relationship between the analog signal (965) and the photon count (970).
Abstract:
A measuring device (10) and a measuring method measure a concentration of gaseous and/or aerosol components of a gas mixture. A reaction carrier (14) has a flow channel (42) defining a reaction chamber (46) with an optically detectable reaction material (48) to react with at least one component or with a reaction product of the component. The measuring device (12) includes a gas delivery unit (2) and detection unit (3) having a lighting device (37) for lighting the reaction chamber (46). An optical sensor (38) detects the reaction. An evaluation unit (4) evaluates data of the optical sensor (38) to determines a concentration. The gas delivery unit (2) includes a gas delivering device (28) delivering the gas mixture through the gas outlet channel (18) and a control/regulation unit (31) which controls/regulates a flow of the gas mixture through the flow channel (42) depending on at least one reaction speed parameter.
Abstract:
An apparatus includes a pipe through which a multiphase fluid flows, with a transparent window structure formed in the pipe. A collimated light source emits light through the transparent window structure into the pipe having a wavelength at which a component of a desired phase of the multiphase fluid is absorptive. A photodetector is positioned such that the emitted light passes through the multiphase fluid in the pipe to impinge upon the photodetector. The photodetector has an actual dynamic range for collimated light detection. Processing circuitry is configured to continuously adjust a power of the collimated light source dependent upon an output level of the photodetector so as to cause measurement of the emitted light over an effective dynamic range greater than the actual dynamic range, and determine a property of the multiphase fluid as a function of the power of the collimated light source.
Abstract:
In one embodiment, a surface analyzer system comprises a radiation targeting assembly to target a radiation beam onto a surface; and a scattered radiation collecting assembly that collects radiation scattered from the surface. The radiation targeting assembly generates primary and secondary beams. Data collected from the reflections of the primary and secondary beams may be used in a dynamic range extension routine, alone or in combination with a power attenuation routine.
Abstract:
An inspection device for inspecting defects of an inspection object including a light source for irradiating a luminous flux to the inspection object; an optical system for guiding reflected light from the inspection object; a photoelectric image sensor having a plurality of photoelectric cells arranged, for converting the light guided to detection signals; a detection signal transfer unit having channels each constituted by a signal correction unit, a converter and an image formation unit, and corresponding to each of a plurality of regions formed by dividing the photoelectric image sensor, respectively; and an image synthesis unit for forming an image of the surface of the object by synthesizing partial images outputted; the inspection device inspecting defects of the object by processing the synthesized image; whereby it becomes possible to correct a detection signal from said photoelectric cell close to a predetermined reference target value.
Abstract:
Biopolymeric array scanners that are capable of automatically selecting a dye specific scale factor to employ for a plurality of different dyes, as wells as methods for making and using the same, are provided. In many embodiments, the actual dye specific scale factor automatically selected by the scanner is one that is equal to a preset “master” scale factor, so that the scanner reads any supported dye using the same constant scale factor. The dye specific scale factor selection is typically made by reference to a collection of nominal scale factors for each member of the plurality of dyes. In using the subject scanners, a user simply inputs the one or more dyes being used in a given array assay, and the scanner automatically reads the array using an automatically chosen dye specific scale factor for the selected dyes. Also provided are methods of obtaining collections of nominal scale factors and computer readable mediums comprising the same. The subject invention finds use in a variety of different applications, including both genomics and proteomics applications.