Abstract:
In order to compensate for performance degradation caused by inferior low-cost analog radio component tolerances of an analog radio, a future system architecture (FSA) wireless communication transceiver employs numerous digital signal processing (DSP) techniques to compensate for deficiencies of such analog components so that modern specifications may be relaxed. Automatic gain control (AGC) functions are provided in the digital domain, so as to provide enhanced phase and amplitude compensation, as well as many other radio frequency (RF) parameters.
Abstract:
A dynamically varying linearity system “DVLS” capable of varying the linearity of a radio frequency (RF) front-end of a communication device responsive to receiving a condition signal indicating a desired mode of operation of a transmitter. The DVLS may include a condition signal indicative of the desired mode of operation and a controller that adjusts the linearity of the transmitter responsive to the condition signal. The condition signal may be responsive to a user interface. The controller, responsive to the condition signal, may dynamically adjust the operating current of the transmitter.
Abstract:
The variable power supply (12) to an amplifier (10) in an electrical circuit is dynamically controlled through the use of a lookup table (14) responsive to one or more operating conditions of the electrical circuit. The lookup table is indexed by one or more of the operating conditions and the amount of amplification to be applied to an input signal to the amplifier is determined. One embodiment of the invention comprises a television transmitter circuit including a power amplifier circuit capable of amplifying a variable frequency COFDM or 8VSB input signal (11) where the amount of amplification applied to the input signal is dynamically controlled through the use of a lookup table as a function of the frequency of the input signal.
Abstract:
Techniques for achieving linear monotonic output power with piecewise non-linear and/or non-monotonic circuits are described. A coarse gain is selected for a first circuit having non-linear and/or non-monotonic characteristics. A fine gain is selected for a second circuit used to account for output power error due to the coarse gain. First and second look-up tables may store output power versus gain for the first and second circuits, respectively. An output power in the first look-up table may be selected based on the requested output power, and the gain corresponding to the selected output power may be provided as the coarse gain. An output power in the second look-up table may be selected based on the output power error, and the gain corresponding to the selected output power may be provided as the second gain.
Abstract:
In order to compensate for performance degradation caused by inferior low-cost analog radio component tolerances of an analog radio, a future system architecture (FSA) wireless communication transceiver employs numerous digital signal processing (DSP) techniques to compensate for deficiencies of such analog components so that modern specifications may be relaxed. Automatic gain control (AGC) functions are provided in the digital domain, so as to provide enhanced phase and amplitude compensation, as well as many other radio frequency (RF) parameters.
Abstract:
The invention provides an automatic gain control and antenna selection method used in a receiver of a radio communication system. The received signal power is estimated by digital signal processing after analog-to-digital conversion in the system, in order to adjust the gain of the front end analog signal until the magnitude of the analog signal is adjusted to an optimum range of the digital signal processing. In addition, the ADC is utilized to estimate the signal power as the basis of the antenna selection.
Abstract:
A dynamically varying linearity system nullDVLSnull capable of varying the linearity of a radio frequency (RF) front-end of a communication device responsive to receiving a condition signal indicating a desired mode of operation of a transmitter. The DVLS may include a condition signal indicative of the desired mode of operation and a controller that adjusts the linearity of the transmitter responsive to the condition signal. The condition signal may be responsive to a user interface. The controller, responsive to the condition signal, may dynamically adjust the operating current of the transmitter.
Abstract:
Techniques for achieving linear monotonic output power with piecewise non-linear and/or non-monotonic circuits are described. A coarse gain is selected for a first circuit having non-linear and/or non-monotonic characteristics. A fine gain is selected for a second circuit used to account for output power error due to the coarse gain. First and second look-up tables may store output power versus gain for the first and second circuits, respectively. An output power in the first look-up table may be selected based on the requested output power, and the gain corresponding to the selected output power may be provided as the coarse gain. An output power in the second look-up table may be selected based on the output power error, and the gain corresponding to the selected output power may be provided as the second gain.
Abstract:
A dynamically varying linearity system “DVLS” capable of varying the linearity of a radio frequency (RF) front-end of a communication device responsive to receiving a condition signal indicating a desired mode of operation of a transmitter. The DVLS may include a condition signal indicative of the desired mode of operation and a controller that adjusts the linearity of the transmitter responsive to the condition signal. The condition signal may be responsive to a user interface. The controller, responsive to the condition signal, may dynamically adjust the operating current of the transmitter.
Abstract:
A dynamically varying linearity system nullDVLSnull capable of varying the linearity of a radio frequency (RF) front-end of a communication device responsive to receiving a condition signal indicating a desired mode of operation of a transmitter. The DVLS may include a condition signal indicative of the desired mode of operation and a controller that adjusts the linearity of the transmitter responsive to the condition signal. The condition signal may be responsive to a user interface. The controller, responsive to the condition signal, may dynamically adjust the operating current of the transmitter.