Abstract:
A method of preparation of M-N—C catalytic material utilizing a sacrificial support approach and using inexpensive and readily available metal precursors and carbendazim (CBDZ) as the carbon source is described.
Abstract:
A photoacoustic imaging device includes an array of light sources configured and arranged to illuminate a target region and an array of ultrasonic transducers between the array of light sources and the target region. The array of transducers may be fixedly coupled to the array of light sources, and the array of ultrasonic transducers may be configured and arranged to receive ultrasound transmissions from the target region.
Abstract:
The present invention provides a coating composition comprising: A coating composition comprising: TEOS; a surfactant; at least one organosilane; HCl; water; and ethanol. The present invention also provides films made from such a coating composition and a method for making such films.
Abstract:
Proppant compositions for use in hydraulic fracturing and methods of using same are disclosed herein. The proppant compositions include a plurality of proppant particulates and at least one particulate of the plurality of proppant particulates containing at least one tracer, wherein the at least one tracer separates from the at least one particulate located inside a fracture of a subterranean formation after a period of time.
Abstract:
Methods and apparatus for long read, label-free, optical nanopore long chain molecule sequencing. In general, the present disclosure describes a novel sequencing technology based on the integration of nanochannels to deliver single long-chain molecules with widely spaced (>wavelength), ˜1-nm aperture “tortuous” nanopores that slow translocation sufficiently to provide massively parallel, single base resolution using optical techniques. A novel, directed self-assembly nanofabrication scheme using simple colloidal nanoparticles is used to form the nanopore arrays atop nanochannels that unfold the long chain molecules. At the surface of the nanoparticle array, strongly localized electromagnetic fields in engineered plasmonic/polaritonic structures allow for single base resolution using optical techniques.
Abstract:
The disclosure describes a method for sequencing long portions of DNA sequence by assembling a plurality of shorter polynucleotide reads. Generally, The method includes annealing a plurality of primers to a denatured DNA molecule, appending a barcode polynucleotide to the 5′ end of the primer, subjecting the DNA molecules to a plurality of cycles of (1) pooling, (2) dividing, and (3) appending a barcode polynucleotide to the 5′ end of the primer, sequencing the barcode polynucleotides and the genomic DNA, and assembling the short read polynucleotide sequences having identical barcode polynucleotides.
Abstract:
Novel catalytic materials and novel methods of preparing M-N—C catalytic materials utilizing a sacrificial support approach and using inexpensive active polymers as the carbon and nitrogen source and readily available metal precursors are described.
Abstract:
The present invention is directed to protocells for specific targeting of hepatocellular and other cancer cells which comprise a nanoporous silica core with a supported lipid bilayer; at least one agent which facilitates cancer cell death (such as a traditional small molecule, a macromolecular cargo (e.g. siRNA or a protein toxin such as ricin toxin A-chain or diphtheria toxin A-chain) and/or a histone-packaged plasmid DNA disposed within the nanoporous silica core (preferably supercoiled in order to more efficiently package the DNA into protocells) which is optionally modified with a nuclear localization sequence to assist in localizing protocells within the nucleus of the cancer cell and the ability to express peptides involved in therapy (apoptosis/cell death) of the cancer cell or as a reporter, a targeting peptide which targets cancer cells in tissue to be treated such that binding of the protocell to the targeted cells is specific and enhanced and a fusogenic peptide that promotes endosomal escape of protocells and encapsulated DNA. Protocells according to the present invention may be used to treat cancer, especially including hepatocellular (liver) cancer using novel binding peptides (c-MET peptides) which selectively bind to hepatocellular tissue or to function in diagnosis of cancer, including cancer treatment and drug discovery.
Abstract:
A method of preparing M-N—C catalysts utilizing a sacrificial support approach and inexpensive and readily available polymer precursors as the source of nitrogen and carbon is disclosed. Exemplary polymer precursors include non-porphyrin precursors with no initial catalytic activity. Examples of suitable non-catalytic non-porphyrin precursors include, but are not necessarily limited to low molecular weight precursors that form complexes with iron such as 4-aminoantipirine, phenylenediamine, hydroxysuccinimide, ethanolamine, and the like.