Abstract:
Described is a method for producing high purity tantalum, the high purity tantalum so produced and sputtering targets of high purity tantalum. The method involves purifying starting materials followed by subsequent refining into high purity tantalum.
Abstract:
A method for producing a porous metal powder comprising subjecting a starting metal to an oxidation treatment and then to a reduction treatment, characterized in that the starting metal is oxidized in the presence of chlorine and/or a chloride. Massive metal bodies formed after reduction comprise pillar-shaped particles being entangled in one another as are rootstocks, and thus, the metal powder has open pores.
Abstract:
A non-aqueous electrolyte secondary battery containing an alloy particle capable of absorbing and desorbing lithium in the negative electrode has a short cycle life and is insufficient in high-rate discharge characteristics, since the alloy particle is pulverized during charge/discharge cycles. In order to solve this problem, a negative electrode is employed, which comprises an alloy particle containing: at least two selected from the group consisting of metal elements and semimetal elements; oxygen; and nitrogen. It is preferred that the alloy particle have a phase A capable of electrochemically absorbing and desorbing lithium ion and a phase B having lithium ion conductivity or lithium ion permeability and that the phase B contain larger amounts of oxygen and nitrogen than the phase A.
Abstract:
Chlorine gas from a supply nozzle is mixed with the vapor of nickel chloride and the mixed gas is supplied from a supply nozzle into a hydrogen gas atmosphere in a reduction reactor at a reduction temperature of 900 to 1100°C. The volume of chlorine gas to be mixed versus the vapor of nickel chloride is adjusted to a ratio of 0.01 to 0.5 moles per mole of the vapor of nickel chloride. The particle size of the nickel powder can be controlled appropriately, and also, uniformity of particle size, smoothability of surfaces of particles, and sphericity can be improved.
Abstract:
Thermoplastische Massen für die Herstellung metallischer Formkörper, enthaltend
A) 40 - 70 Vol.% eines sinterbaren pulverförmigen Metalls oder einer pulverförmigen Metallegierung oder deren Mischungen, B) 30 - 60 Vol.% einer Mischung aus
B1) 50 - 100 Gew.-% eines Polyoxymethylenhomo- oder -copolymerisats und B2) 0 - 50 Gew.-% eines mit B1) nicht mischbaren Polymerisats, das sich thermisch ohne Rückstand entfernen läßt oder eine Mischung solcher Polymeren als Bindemittel, und C) 0 - 5 Vol.% eines Dispergierhilfsmittels.
Abstract:
A process for producing ultrafine magnetic metal powder, which comprises reacting a hydrogen gas with a metal halide vapor while supplying an active gas having a higher reactivity with the metal halide vapor than with the hydrogen gas into the reaction zone. As a result, the amount of the hydrogen gas can be reduced, and ultrafine magnetic metal powder with good properties can be produced efficiently.
Abstract:
An additive manufacturing system including a housing configured to contain a powder bed of material, and an array of laser emitters having a field of view. The array is configured to melt at least a portion of the powder bed within the field of view as the array translates relative to the powder bed. The system further includes a spatter collection device including a diffuser configured to discharge a stream of gas across the powder bed, and a collector configured to receive the stream of gas and contaminants entrained in the stream of gas. The collector is spaced from the diffuser such that a collection zone is defined therebetween, and the spatter collection device is configured to translate relative to the powder bed such that the collection zone overlaps with the field of view of the array.
Abstract:
A method is provided for the heat treatment of an object comprising at least one rare-earth element with a high vapor pressure. One or more objects comprising at least one rare-earth element with a high vapor pressure are arranged in an interior of a package. An external source of the at least one rare-earth element is arranged so as to compensate for the evaporation of this same rare-earth element from the object and/or to increase the vapor pressure of the rare-earth element in the interior of the package, and the package is heat treated.
Abstract:
In a method for treating combustible and/or reactive particles (34) which have been separated from a gas stream (32) by means of a separation device (36) an oxidizing agent is supplied to an atmosphere surrounding the particles (34) so as to cause a passivating oxidation of at least a part of the particles (34). A content of the oxidizing agent in the atmosphere surrounding the particles (34) is detected and the supply of the oxidizing agent to the atmosphere surrounding the particles (34) is controlled in dependence on the detected content of the oxidizing agent in the atmosphere surrounding the particles (34).
Abstract:
The additive manufacturing device includes a positioning mechanism configured to provide independent movement of a build unit in at least two dimensions. The build unit may include a gasflow device for providing a flow zone and an irradiation beam directing unit. The irradiation beam directing unit may form a first solidification line and form a second solidification line at an angle other than 0° and 180° with respect to the first solidification line. During the formation of the first solidification line, the build unit may be positioned in a first orientation such that the first direction of the flow zone is substantially perpendicular to the first solidification line. During the formation of the second solidification line, the build unit may be positioned in a second orientation such that the flow zone along the first direction is substantially perpendicular to the second solidification line.