Abstract:
A desired color of illumination of a subject is achieved by determining settings for color inputs and applying those setting to one or more systems that generate and mix colors of light, so as to provide combined light of the desired character. In the examples of appropriate systems (10), an optical integrating cavity (11) diffusely reflects light of three or more colors, and combined light emerging from an aperture of the cavity illuminates the subject. System settings for amounts of the different colors of the input lights (19) are easily recorded for reuse or for transfer and use in other systems.
Abstract:
Die Erfindung betrifft eine Vorrichtung zur mehrstufigen Dämpfung einfallender Strahlungsenergie, insbesondere zur Kalibrierung von bildgestützten Instrumenten zur Fernerkundung der Erde. Die Aufgabe, eine neue Möglichkeit zur definierten mehrstufigen Dämpfung einer Konstantlichtquelle zu finden, die mit einfachen Mitteln eine zuverlässige und langzeitstabile reproduzierbare Einstellung von definierten Strahlungszuständen, insbesondere für die Mehrpunktkalibrierung von Sensoren, gestattet, wird erfindungsgemäß gelöst, indem Filter mit unterschiedlicher Transmission als begrenzte Anzahl von Filterplatten (3; 31, 32) mit beliebig hergestellter Transmissionsstruktur in einem Lichtschacht (2), der einen Kalibrierstrahlengang darstellt, hintereinander aperturfüllend einsetzbar sind, so dass sie jeweils einzeln und in Kombinationen miteinander eine Anzahl von definierten, reproduzierbar abgestuften Dämpfungszuständen des Lichts einer Referenzstrahlungsquelle (1), die die Anzahl der Filterplatten (3; 31, 32) übersteigt, erzeugen.
Abstract:
Eine Bewitterungsvorrichtung weist eine oder mehrere UV-Strahlungsquellen (2) und einen oder mehrere erste Sensor(en) (3) auf, die für einen ersten spektralen Empfindlichkeitsbereich kalibriert sind. In einem ersten Aspekt der Erfindung ist der oder einer der ersten Sensor(en) (3) derart kalibriert, dass aus seinem Ausgangssignal die Strahlungsleistung eines innerhalb des ersten Empfindlichkeitsbereich liegenden spektralen Bereichs ermittelbar ist. In einem zweiten Aspekt der Erfindung ist ein zweiter Sensor (4) vorgesehen, welcher für einen zweiten spektralen Empfindlichkeitsbereich kalibriert ist.
Abstract:
A desired color of illumination of a subject is achieved by determining settings for color inputs and applying those setting to one or more systems that generate and mix colors of light, so as to provide combined light of the desired character. In the examples of appropriate systems (10), an optical integrating cavity (11) diffusely reflects light of three or more colors, and combined light emerging from an aperture of the cavity illuminates the subject. System settings for amounts of the different colors of the input lights (19) are easily recorded for reuse or for transfer and use in other systems.
Abstract:
This invention provides a solar simulator measurement method capable of high-accuracy measurements with fast-response photovoltaic devices as well as with slow-response photovoltaic devices, and a solar simulator for implementing the method. A flash having a pulse wave form with a flattened peak is generated from a xenon lamp 1. The flash is sensed by an irradiance detector 3, its irradiance measured, and the irradiance of the light source is adjusted to fall within a prescribed narrow range based on the detected irradiance value. Then, the flash with irradiance within the prescribed range irradiates photovoltaic devices 4 under measurement, and the current and the voltage output by the photovoltaic devices 4 are measured at multiple points while a load of the photovoltaic devices 4 is controlled. This process is repeated with multiple flashes to obtain an I-V curve for the photovoltaic devices.
Abstract:
A system for measuring optical detector linearity according to the present invention employs a laser source that illuminates an integrating sphere. The sphere randomizes the laser signal phase and produces a uniform intensity over the sphere output. A collimator expands the sphere output for entry into an interferometer, where the incident optical energy is amplitude modulated in a sinusoidal fashion by a linear mechanical mirror movement. Optical band filters eliminate significant harmonic content being present on a pre-detected optical signal. Sampling of the detected signal energy is performed synchronous to the mechanical mirror position to assure sinusoidal response. The sampled signals are processed to separately determine signal harmonic components attributed to detector non-linearity and multiple laser reflections within the system. The system utilizes at least two measurements at two different laser intensities. An optional third measurement of background radiance may be applied to the first two measurements to enhance accuracy.
Abstract:
The present invention provides a luminescent device (1) comprising a gaseous tritium light source (GTLS) (3). The GTLS (3) is held within a housing (2) which may optionally be located in an outer casing. A filter, such as a neutral density filter, may be used to modify the light output to predetermined levels. The device may be used to calibrate apparatus used to measure optical output, such as a luminometer.
Abstract:
A reflected ultraviolet light measuring device, a measuring method for measuring ultraviolet light reflection intensity by using the reflected ultraviolet light measuring device, and a valuation method for evaluating ultraviolet light absorbability of an object (m) by using measuring results by the method, said device comprising an irradiating unit comprising a at least one light emitting diode (2a,2b) for irradiating ultraviolet light on an object (m), and a light receiving unit (4) for receiving a reflected light from the object (m), wherein the light receiving unit (4) is arranged at an angle in which a regular reflected light from the object (m) does not enter.
Abstract:
Method and system (300, 600, 800, 900) are disclosed for de-embedding optical component characteristics from optical device measurements. In particular, the invention uses frequency domain averaging of the RBS on both sides of an optical component to determine one or more of its optical characteristics. Where the RBS has a slope (e.g., as in the case of a lossy fiber), a frequency domain least square fit can be used to determine the optical component characteristics. In addition, the invention uses a reference DUT (604) to correct for variations in the frequency response of a photoreceiver (332). A reference interferometer (808) is used in the invention to correct for sweep non-linearity of the TLS (322). The optical component characteristics are then de-embedded from optical device measurements to provide a more precise analysis of the optical device.
Abstract:
An automatically testable obscuration detector incorporates one of an electrically controllable filter or a mechanically selected filter. Filtered outputs can be compared to expected outputs by control circuitry to automatically assess detector operation.