Abstract:
An analyzer of a component in a sample fluid includes an optical source and an optical detector defining a beam path of a beam, wherein the optical source emits the beam and the optical detector measures the beam after partial absorption by the sample fluid, a fluid flow cell disposed on the beam path defining an interrogation region in the a fluid flow cell in which the optical beam interacts with the sample fluid and a reference fluid; and wherein the sample fluid and the reference fluid are in laminar flow, and a scanning system that scans the beam relative to the laminar flow within the fluid flow cell, wherein the scanning system scans the beam relative to both the sample fluid and the reference fluid.
Abstract:
A surface inspection system, as well as related components and methods, are provided. The surface inspection system includes a beam source subsystem, a beam scanning subsystem, a workpiece movement subsystem, an optical collection and detection subsystem, and a processing subsystem. The optical collection and detection system features, in the front quartersphere, a light channel assembly for collecting light reflected from the surface of the workpiece, and a front collector and wing collectors for collecting light scattered from the surface, to greatly improve the measurement capabilities of the system. The light channel assembly has a switchable edge exclusion mask and a reflected light detection system for improved detection of the reflected light.
Abstract:
A method for optical detection of residual soil on articles (such as medical instruments and equipment), after completion of a washing or a rinsing operation by a washer. A soil detection system provides an indication of soil on the articles by detecting luminescent radiation emanating from the soil in the presence of ambient light.
Abstract:
Novel systems and methods for performing treatment (e.g., coloration) of keratinous fibers are disclosed. The methods and systems utilize one or more of a dispensing device which is configured to provide customized composition for treating keratinous fibers (e.g., a coloring composition), optionally formed from tablets; an optical reader, for obtaining sufficient characteristics of the keratinous fibers to make a realistic prediction of the outcome of a treatment (e.g., coloring treatment); a computational units for predicting an outcome of a treatment, optionally being interfaced with the dispensing device and for selecting a customized treatment; and tablet formulations which are useful in preparing customized composition for treating keratinous fibers. Further disclosed are rapidly disintegrating tablets for use in the preparation of compositions for treating keratinous fibers.
Abstract:
A laser scanning microscope apparatus includes an irradiation unit including an objective lens, a photodetector unit, an XY-scanning unit, and a Z-scanning unit. The irradiation unit focuses a laser beam with the objective lens to a specimen. The photodetector unit detects light generated from a position irradiated with the laser beam focused. The XY-scanning unit scans the laser beam in an X-direction perpendicular to an optical axis of the objective lens and in a Y-direction perpendicular to the optical axis and the X-direction. The Z-scanning unit scans the laser beam in a Z-direction parallel to the optical axis. When acquiring XY-two-dimensional image data by detecting the light while scanning the irradiated position in the X-direction and the Y-direction, the apparatus detects the light while scanning the irradiated position also in the Z-direction.
Abstract:
In the scanning molecule counting method detecting light of a light-emitting particle in a sample solution using a confocal or multiphoton microscope, there is provided an optical analysis technique enabling the scanning in a sample solution with moving a light detection region in a broader area or along a longer route while making the possibility of detecting the same light-emitting particle as different particles as low as possible and remaining the size or shape of the light detection region unchanged as far as possible. In the inventive optical analysis technique, there are performed detecting light from the light detection region and generating time series light intensity data during moving the light detection region along the second route whose position is moved along the first route, and thereby, the signal indicating light from each light-emitting particle in a predetermined route is individually detected using the time series light intensity data.
Abstract:
A method is disclosed evaluating a silicon layer crystallized by irradiation with pulses form an excimer-laser. The crystallization produces periodic features on the crystalized layer dependent on the number of and energy density ED in the pulses to which the layer has been exposed. An area of the layer is illuminated with light. A microscope image of the illuminated area is made from light diffracted from the illuminated are by the periodic features. The microscope image includes corresponding periodic features. The ED is determined from a measure of the contrast of the periodic features in the microscope image.
Abstract:
A method for inspecting a surface of a workpiece for asymmetric defects, by scanning an incident beam on the surface of the workpiece to impinge thereon to create reflected light extending along a light channel axis in a front quartersphere and scattered light, the incident beam and the light channel axis defining an incident plane, collecting the scattered light at a plurality of collectors disposed above the surface at defined locations such that scatter from asymmetric defects is collectable by at least one collector, detecting collector output and generating signals in response, and processing the signals associated with each collector individually to obtain information about asymmetric defects.
Abstract:
A method and an apparatus for precisely detecting a trench S in a product W to become a thin film solar cell are provided. In the product W, a lower electrode layer 12, in which the trench S is created, and light absorbing layers 13 and 14 are layered on a substrate 11 in this order. The method includes the steps of: detecting infrared rays for imaging, of which the wavelengths are in such a range that can transmit through the light absorbing layers 13 and 14 and which are irradiated from the product W, by means of an infrared ray imaging apparatus 16 that is provided above the light absorbing layers 13 and 14 so that image data for radiation intensity distribution can be taken; and detecting the trench S in the lower electrode layer 12 on the basis of this image data for radiation intensity distribution.
Abstract:
An apparatus for obtaining suspended particle information includes an optical array to divide light to a first path and a second path, a platform to orient a first and second container with either the first or second path, and a first and second photodetector to receive at least a direct illuminating component of the light of the first and second path after said light penetrates through the first and second container. A detector interface receives transmission signals from the first and second photodetectors of the direct illuminating component of the light after penetrating through the first and second container and a calculation engine computes the particle information based on a ratio of the received transmission signals.