Abstract:
A heat dissipation structure including: a printed circuit board; a first heat-generating element; a second heat-generating element; and a cured product of a thermally conductive curable liquid resin composition, the printed circuit board having a first surface and a second surface that is opposite to the first surface, the first heat-generating element being placed on the first surface, the second heat-generating element being placed on the second surface, the first heat-generating element generating an equal or greater amount of heat than the second heat-generating element, the second heat-generating element being surrounded by the cured product, the first heat-generating element being surrounded by a layer that has a lower thermal conductivity than the cured product.
Abstract:
A light emitting package, includes a base; a light emitting device on the base; an electrical circuit layer electrically connected to the light emitting device; an optical member formed of a light transmissive material; and a guiding member guiding the optical member, the guiding member including an opening, a first portion disposed on the uppermost surface of the base, and a second portion connected to an edge portion of the optical member. The first portion of the guiding member is positioned higher than a bottom surface of the optical member, an uppermost surface of the base is closer to the first portion of the guiding member than the second portion of the guiding member, and the edge portion of the optical member is closer to the second portion of the guiding member than the first portion of the guiding member.
Abstract:
An electrical apparatus, comprising a circuit board, and a capacitor installed on the circuit board; the capacitor is detachably installed on the circuit board. The capacitor can be conveniently detached from the circuit board; therefore, a damaged capacitor can be easily replaced with a new capacitor, saving cost by avoiding the problem in the prior art that the entire electrical apparatus is discarded or causes downtime for repairs due to a damaged capacitor.
Abstract:
The invention relates to a circuit board, particularly for a power-electronic module, comprising an electrically-conductive substrate which consists, at least partially and preferably entirely, of aluminium and/or an aluminium alloy. On at least one surface of the electrically-conductive substrate, at least one conductor surface is arranged in the form of an electrically-conductive layer applied preferably using a printing method and more preferably using a screen-printing method, said conductor surface being in direct electrical contact with the electrically-conductive substrate.
Abstract:
The invention relates to a thermoelectric generator module with a hot zone and a cold zone including at least a first metal-ceramic substrate, which has a first ceramic layer and at least one structured first metallization applied to the first ceramic layer and is assigned to the hot zone, and at least a second metal-ceramic substrate, which has a second ceramic layer and at least one structured second metallization applied to the second ceramic layer and is assigned to the cold zone, and also a number of thermoelectric generator components located between the first and second structured metallizations of the metal-ceramic substrates. The first metal-ceramic substrate, assigned to the hot zone, has at least one layer of steel or high-grade steel, wherein the first ceramic layer is arranged between the first structured metallization and the at least one layer of steel or high-grade steel. The invention also relates to an associated metal-ceramic substrate and to a method for producing it.
Abstract:
The present invention discloses a light emitting package, comprising: a base; a light emitting device on the base; an electrical circuit layer electrically connected to the light emitting device; a gold layer on the electrical circuit layer; a wire electrically connected between the light emitting device and the gold layer; a screen member having an opening and disposed on the base adjacent to the light emitting device; and a lens covering the light emitting device, wherein a bottom surface of the screen member is positioned higher than the light emitting device, and wherein an entire uppermost surface of the screen member is in contact with the lens.
Abstract:
The present invention discloses a light emitting device package, comprising: a metal base; an electrical circuit layer provided at an upper side of the metal base for providing a conductive path; a light emitting device mounted in a second region having a smaller thickness than a first region on the metal base; an insulating layer sandwiched between the meta base and the electrical circuit layer; an electrode layer provided at an upper side of the electrical circuit layer; and a wire for electrically connecting the electrode layer and the light emitting device. Further, there is provided a light emitting device package which is improved in light emission efficiency since the light emitting device is placed on a small thickness portion of the metal base.
Abstract:
The present invention discloses a light emitting device package, comprising: a metal base; an electrical circuit layer provided at an upper side of the metal base for providing a conductive path; a light emitting device mounted in a second region having a smaller thickness than a first region on the metal base; an insulating layer sandwiched between the meta base and the electrical circuit layer; an electrode layer provided at an upper side of the electrical circuit layer; and a wire for electrically connecting the electrode layer and the light emitting device. Further, there is provided a light emitting device package which is improved in light emission efficiency since the light emitting device is placed on a small thickness portion of the metal base.
Abstract:
A display panel includes a substrate including a display area and a pad area, a plurality of pad electrodes disposed on the pad area, and an insulating layer disposed between adjacent ones of the plurality of pad electrodes and including a heat absorbing particle. A laser is irradiated to heat the insulating layer, and the heat absorbing particle in the insulating layer absorbs the heat and cures an anisotropic conductive film by heat transfer to electrically connect the plurality of pad electrodes to a plurality of bump electrodes.
Abstract:
A display panel includes a substrate including a display area and a pad area, a plurality of pad electrodes disposed on the pad area, and an insulating layer disposed between adjacent ones of the plurality of pad electrodes and including a heat absorbing particle. A laser is irradiated to heat the insulating layer, and the heat absorbing particle in the insulating layer absorbs the heat and cures an anisotropic conductive film by heat transfer to electrically connect the plurality of pad electrodes to a plurality of bump electrodes.