Abstract:
Application of digital light processor (DLP) systems in monochromator, spectrophotometer or the like systems to mediate selection of individual wavelengths, and/or to image elected regions of a sample in an imaging ellipsometer, imaging polarimeter, imaging reflectometer, imaging spectrophotometer, and/or to provide chopped beams.
Abstract:
In spectral detection for detecting the shape of repeating pattern structures uniformly formed on a surface of a test object, it is advantageous to use light having a wide wavelength range in a short wavelength region. However, it is not easy to realize a relatively simple optical system capable of spectral detection of light having a wide wavelength range in a short wavelength region, namely in ultraviolet region. The present invention provides an inspection apparatus for detecting pattern defects. The inspection apparatus includes a spectral detection optical system capable of spectral detection of light in a wavelength range from deep ultraviolet to near infrared. The spectral detection optical system includes a spatially partial mirror serving as a half mirror and a reflecting objective provided with an aperture stop for limiting the angle and direction of light to be applied to and reflected by a test object.
Abstract:
An analysis system, tool, and method for performing downhole fluid analysis, such as within a wellbore. The analysis system, tool, and method provide for a tool including a spectroscope for use in downhole fluid analysis which utilizes an adaptive optical element such as a Micro Mirror Array (MMA) and two distinct light channels and detectors to provide real-time scaling or normalization.
Abstract:
A spectroscope designed to utilize an adaptive optical element such as a micro mirror array (MMA) and two distinct light channels and detectors. The devices can provide for real-time and near real-time scaling and normalization of signals.
Abstract:
In a measuring apparatus for a semiconductor multiple layer structure, a spectrometer disperses light from a sample for measurement of the photoluminescence spectrum or disperses probe light to irradiate the sample for the measurement of the reflection spectrum. A controller makes a guide member guide the white light to the spectrometer and acquire electric signals from a first detector for the measurement of the reflection spectrum, and makes the guide member guide the light from the spectrometer to a second detector to acquire electric signals for the measurement of the photoluminescence spectrum.
Abstract:
A spectrometer system includes a thermal light source for illuminating a sample, where the thermal light source includes a filament that emits light when heated. The system additionally includes a spectrograph for measuring a light spectrum from the sample and an electrical circuit for supplying electrical current to the filament to heat the filament and for controlling a resistance of the filament. The electrical circuit includes a power supply that supplies current to the filament, first electrical components that sense a current through the filament, second electrical components that sense a voltage drop across the filament, third electrical components that compare a ratio of the sensed voltage drop and the sensed current with a predetermined value, and fourth electrical components that control the current through the filament or the voltage drop across the filament to cause the ratio to equal substantially the predetermined value.
Abstract:
A spectroscopy system is provided which is optimized for operation in the VUV region and capable of performing well in the DUV-NIR region. Additionally, the system incorporates an optical module which presents selectable sources and detectors optimized for use in the VUV and DUV-NIR. As well, the optical module provides common delivery and collection optics to enable measurements in both spectral regions to be collected using similar spot properties. The module also provides a means of quickly referencing measured data so as to ensure that highly repeatable results are achieved. The module further provides a controlled environment between the VUV source, sample chamber and VUV detector which acts to limit in a repeatable manner the absorption of VUV photons. The use of broad band data sets which encompass VUV wavelengths, in addition to the DUV-NIR wavelengths enables a greater variety of materials to be meaningfully characterized. Array based detection instrumentation may be exploited to permit the simultaneous collection of larger wavelength regions.
Abstract:
An optical measuring device, particularly using spectrophotometry, which comprises at least one group of optical fibers (24) connected to measuring cells, at least one auxiliary optical fiber (30) and at least one selection member connecting the latter to the group. The selective member establishes a link between the auxiliary fiber and one of the fibers of the group. The selection member comprises fixed optical means (32, 34 ) for establishing the link between the group and the auxiliary fiber and retractable seals (36) associated with the fibers of the group and which seal the ends of auxiliary fibers leading to said member.
Abstract:
A compact high performance absorbance detector including a flashlamp light source and folded optics system with ruled grating reflecting beam splitter for minimizing flash to flash angular pattern and spectral variations of the flashlamp.
Abstract:
Light irradiated to a sample is detected by a detector in order to measure the optical properties of the sample. The image of a minute virtual light source for the light is focused in the neighborhood of the measuring face of the sample by a first optical system arranged between the light source and the sample. The light outgoing from the sample is incident to the detector by way of a second optical system arranged between the sample and the detector and having conjugate points in the neighborhood of the measuring face of the sample and of the light receiving point of the detector.