Abstract:
A method for forming an electron emissive film (200, 730, 830) includes the steps of: (i) evaporating a graphite source (120, 620) in a cathodic arc deposition apparatus (100, 600) to create a carbon plasma (170, 670), (ii) applying a potential difference between the graphite source (120, 620) and a glass or silicon deposition substrate (130, 630, 710, 810) for accelerating the carbon plasma (170, 670) toward the deposition substrate (130, 630, 710, 810), (iii) providing a working gas within the cathodic arc deposition apparatus (100, 600), and (ii) depositing the carbon plasma (170, 670) onto the deposition substrate (130, 630, 710, 810).
Abstract:
A surface cold electron emission display device includes; a pair of an element-substrate and a transparent substrate sandwiching a vacuum space and facing to each other; plural ohmic electrodes disposed on the element-substrate parallel to each other; and plural cold electron emission elements made of semiconductor. Each cold electron emission element includes; a semiconductor layer formed on the ohmic electrode; a porous semiconductor layer formed on the semiconductor layer; and a metallic thin film electrode formed on the porous semiconductor layer to face the vacuum space. The device also includes; a plurality of bus electrodes formed on the metallic thin film electrodes for bridging and electrically connecting the adjacent metallic thin film electrodes and extending perpendicular to the ohmic electrodes; a plurality of collector electrode disposed on the transparent substrate parallel to each other for capturing emitted electrons from the metallic thin film electrode; and a fluorescent layer formed on the collector electrode.
Abstract:
A substrate is coated with a compound comprised of a cation completed by a heterocyclic multidentate ligand, which provides a surface having a low work-function and facilitates the emission of electrons.
Abstract:
Vacuum diode-based devices, including Vacuum Diode Heat Pumps and Vacuum Thermionic Generators, are described in which the electrodes are coated with an electride. These materials have low work functions, which means that contact potential difference between cathode and anode may be set against the effects of space charge, resulting in an improved device whereby anode and cathode may be set at a greater distance from each other than has been previously envisaged.
Abstract:
A lead wire arrangement used in the pinch seal of a tungsten halogen incandescent or air burning discharge lamp. The outer lead wires are made of an oxidation resistant material having a melting point significantly lower than the temperature surrounding the foil and lead wire arrangement during the pinch sealing process. Because the temperature reached during pinch sealing is of the order 2,000.degree. C. conventionally outer lead wires have been made of a highly refractory material, for example, molybdenum which has to be coated with platinum to prevent oxidation. The invention uses materials having significantly lower melting points than 2,000.degree. C. which are also oxidation resistant thus avoiding the use of the expensive platinum. Suitable materials for the outer lead wires include titanium wire, titanium coated wire, nickel/iron alloys and titanium/molybdenum alloys.
Abstract:
A liquid metal ion source and alloy for the simultaneous ion evaporation of arsenic and boron, arsenic and phosphorus, or arsenic, boron and phosphorus. The ionic species to be evaporated are contained in palladium-arsenic-boron and palladium-arsenic-boron-phosphorus alloys. The ion source, including an emitter means such as a needle emitter and a source means such as U-shaped heater element, is preferably constructed of rhenium and tungsten, both of which are readily fabricated. The ion sources emit continuous beams of ions having sufficiently high currents of the desired species to be useful in ion implantation of semiconductor wafers for preparing integrated circuit devices. The sources are stable in operation, experience little corrosion during operation, and have long operating lifetimes.