Abstract:
레이더 수신기에 대한 비디오 증폭기는 온도 보상 감쇠기를 포함한다. 감쇠기는 전압 분배기 네트워크에 배치된 서미스터와 같은 온도 감지 디바이스를 포함하며, 두개의 필터 스테이지 사이에 종속 접속된다. 상기 필터 스테이지의 각각은 저 주파수 누설 신호를 필터링하고 주파수 및 그에 따른 범위에 기초한 감도 제어를 제공하기 위해 대역 통과 특성을 갖는다. 또한 고 주파수 신호의 필터링은 에일리어싱을 감소시킨다.
Abstract:
A radar system includes a transmit antenna for transmitting a first RF signal, a receive antenna for receiving a second RF signal, and a receiver circuit coupled to the receive antenna for processing the second RF signal and comprising a video amplifier having a temperature compensating attenuator. A radar receiver includes an RF amplifier, a down-converter and a video amplifier comprising a temperature compensating attenuator. The RF amplifier has an input terminal adapted to receive an RF signal and an output terminal at which an amplified RF signal is provided. The down-converter has an input terminal coupled to the output terminal of the RF amplifier and an output terminal at which a lower frequency signal is provided. The video amplifier has an input terminal coupled to the output terminal of the down-converter and an output terminal at which a filtered signal is provided.
Abstract:
레이더 탐색 프로세스는 특정 탐색 지역 안에 있는 물체를 탐색하기 위해 FFT 출력 신호의 도함수를 계산하는 단계를 포함한다. 한 실시예에서, 상기 FFT 출력 신호의 제2 도함수의 제로 교차는 물체의 존재를 의미한다. 상기 물체의 범위는 상기 제로 교차가 발생하는 주파수의 함수로 결정된다. 각 레이더 빔과 프로세싱 사이클 안에 물체가 존재하는지 또는 존재하지 않는지를 지시하는 지시자들을 포함하는 탐색 테이블이 또한 설명된다. 적어도 두 개의 상기 지시자들은 상기 탐색 지역 안에 물체가 존재하는지를 탐색하기 위해 결합되며, 상기 안테나 빔들 각각의 범위 게이트를 변화시킴으로써 상기 탐색 지역의 커버리지는 변화될 수 있다.
Abstract:
레이더 수신기에 대한 비디오 증폭기는 온도 보상 감쇠기를 포함한다. 감쇠기는 전압 분배기 네트워크에 배치된 서미스터와 같은 온도 감지 디바이스를 포함하며, 두개의 필터 단게 사이에 종속 결합된다. 상기 필터 스테이지의 각각은 낮은 주파수 누설 신호를 필터링하고 주파수 및 그에 따른 범위에 기초한 감도 제어를 제공하기 위해 대역 통과 특성을 갖는다. 또한 높은 주파수 신호의 필터링은 어라이징을 감소시킨다.
Abstract:
PURPOSE: A recognizing method of an object in a constant speed traveling system for a vehicle is provided to exactly recognize the object in front of a vehicle by reducing an error of distance data in a curve road. CONSTITUTION: A shape of a curve road is detected by an imaginary circle to be faced to extensions of front wheels and rear wheels. Distance data between two objects corresponding to two sensors in front of a vehicle is checked. The shape of the data corresponding to the continuous points of the objects is regular when the difference of the two distance data. In corresponding the shape of the curve road to the shape of the data, the object is recognized as a stop target. In differing each other, the object is recognized as a front vehicle. Thereby, the reliability is improved.
Abstract:
An antenna element is described which has at least one radiator layer disposed over a feed circuit layer. The radiator has a first ground plane disposed thereon and the feed circuit layer has a second ground plane disposed thereon. A conductive path couples the first and second ground plane layers to provide a cavity in the radiator and feed circuit layers. The cavity may be formed by embedded vias which provide a continuous conductive path between the first and second ground plane layers. A cover layer disposed over the radiator layer may function to tune the antenna element. The radiator layers may be provided from a low temperature co-fired ceramic substrate. Apertures in the radiator layers may be used to match an impedance of the antenna element to a predetermined impedance.
Abstract:
A radar detection process includes computing a derivative of an FFT output signal to detect an object within a specified detection zone. In one embodiment, a zero crossing in the second derivative of the FFT output signal indicates the presence of an object. The range of the object is determined as a function of the frequency at which the zero crossing occurs. Also described is a detection table containing indicators of the presence or absence of an object within a respective radar beam and processing cycle. At least two such indicators are combined in order to detect the presence of an object within the detection zone and with changing range gates in each of the antenna beams the coverage of the detection zone can be varied.
Abstract:
A radar detection process includes computing a derivative of an FFT output signal to detect an object within a specified detection zone. In one embodiment, a zero crossing in the second derivative of the FFT output signal indicates the presence of an object. The range of the object is determined as a function of the frequency at which the zero crossing occurs. Also described is a detection table containing indicators of the presence or absence of an object within a respective radar beam and processing cycle. At least two such indicators are combined in order to detect the presence of an object within the detection zone and with changing range gates in each of the antenna beams the coverage of the detection zone can be varied.
Abstract:
A radar detection process includes computing a derivative of an FFT output signal to detect an object within a specified detection zone. In one embodiment, a zero crossing in the second derivative of the FFT output signal indicates the presence of an object. The range of the object is determined as a function of the frequency at which the zero crossing occurs. Also described is a detection table containing indicators of the presence or absence of an object within a respective radar beam and processing cycle. At least two such indicators are combined in order to detect the presence of an object within the detection zone and with changing range gates in each of the antenna beams the coverage of the detection zone can be varied.