THREE-DIMENSIONAL MANIPULATION OF TEAMS OF QUADROTORS
    212.
    发明申请
    THREE-DIMENSIONAL MANIPULATION OF TEAMS OF QUADROTORS 审中-公开
    四方的三维操纵

    公开(公告)号:WO2014018147A2

    公开(公告)日:2014-01-30

    申请号:PCT/US2013/038769

    申请日:2013-04-30

    CPC classification number: G05D1/104 B64C39/024 B64C2201/14 G08G5/04

    Abstract: A system and method is described for controlling flight trajectories of at least two flying vehicles towards goal positions. The system includes at least two flying vehicles with onboard inertial measurement units for determining and updating orientation, angular velocities, position and linear velocities of the at least two flying vehicles, a motion capture system to detect current position and velocity of each of the at least two flying vehicles, and a base controller in communication with the motion capture system and in communication with the plurality of flying vehicles. The base controller calculates for each of the flying vehicles, at predetermined intervals of time, optimum trajectory paths using piece-wise smooth polynomial functions, applying weighting factors, and enforcing overlap constraints. The base controller also sends, based on the calculated optimum trajectory path, commands to each of the flying vehicles to control, individually, their state, causing the at least two flying vehicles to follow the calculated optimum trajectory path while avoiding collisions.

    Abstract translation: 描述了用于控制至少两个飞行车辆朝向目标位置的飞行轨迹的系统和方法。 该系统包括至少两个飞行车辆,其具有用于确定和更新至少两个飞行车辆的定向,角速度,位置和线速度的船载惯性测量单元,用于检测至少两个飞行器中的每一个的当前位置和速度的运动捕捉系统 两个飞行车辆,以及与运动捕捉系统通信并与多个飞行车辆通信的基地控制器。 基本控制器以预定的时间间隔计算每个飞行车辆,使用分段平滑多项式函数的最佳轨迹路径,应用加权因子以及执行重叠约束。 基地控制器还基于所计算的最佳轨迹路径,向每个飞行车辆发送命令以分别控制其状态,使得至少两个飞行车辆遵循计算的最佳轨迹路径同时避免碰撞。

    DEEP STALL AIRCRAFT LANDING
    213.
    发明申请
    DEEP STALL AIRCRAFT LANDING 审中-公开
    深空飞机着陆

    公开(公告)号:WO2013028221A1

    公开(公告)日:2013-02-28

    申请号:PCT/US2012/000358

    申请日:2012-08-16

    Abstract: An aircraft defining an upright orientation and an inverted orientation, a ground station; and a control system for remotely controlling the flight of the aircraft. The ground station has an auto-land function that causes the aircraft to invert, stall, and controllably land in the inverted orientation to protect a payload and a rudder extending down from the aircraft. In the upright orientation, the ground station depicts the view from a first aircraft camera. When switching to the inverted orientation: (1 ) the ground station depicts the view from a second aircraft camera, (2) the aircraft switches the colors of red and green wing lights, extends the ailerons to act as inverted flaps, and (3) the control system adapts a ground station controller for the inverted orientation. The aircraft landing gear is an expanded polypropylene pad located above the wing when the aircraft is in the upright orientation.

    Abstract translation: 定义直立方向和倒置方向的飞机,地面站; 以及用于远程控制飞机飞行的控制系统。 地面站具有自动地面功能,使飞机以反方向反转,失速和可控地降落,以保护从飞机向下延伸的有效载荷和舵。 在直立方向,地面站描绘从第一架飞机摄像机的视图。 当切换到倒置方向时:(1)地面站描绘从第二架飞机照相机的视野,(2)飞机切换红色和绿色翼灯的颜色,延伸副翼作为倒转襟翼,(3) 控制系统适应地面站控制器的倒置方向。 飞机起落架是当飞机处于直立方向时位于机翼上方的扩展的聚丙烯垫。

    AUTOMATIC RECOVERY SYSTEMS AND METHODS FOR UNMANNED AIRCRAFT SYSTEMS
    215.
    发明申请
    AUTOMATIC RECOVERY SYSTEMS AND METHODS FOR UNMANNED AIRCRAFT SYSTEMS 审中-公开
    无人驾驶飞机系统的自动回收系统和方法

    公开(公告)号:WO2017184439A1

    公开(公告)日:2017-10-26

    申请号:PCT/US2017/027528

    申请日:2017-04-14

    Abstract: An aircraft, such as an unmanned aircraft, can include a forward propulsion system comprising one or more engines and one or more rotors coupled to a corresponding engine; a vertical propulsion system comprising one or more vertical propulsion engines and one or more corresponding rotors coupled thereto; a sensor package comprising one or more sensors to detect an operating parameter of the aircraft. It may further include an automatic recovery system that includes an input coupled to the sensor package; an output coupled to an aircraft controller; a processor to monitor one or more operating parameters of the aircraft, detect a failure of the forward propulsion system based on the operating parameters, and transition the aircraft to the vertical propulsion system for landing.

    Abstract translation: 诸如无人驾驶飞机之类的飞机可以包括前进推进系统,该前进推进系统包括一个或多个发动机以及一个或多个联接到相应发动机的转子; 垂直推进系统,其包括一个或多个垂直推进发动机以及与其连接的一个或多个对应的转子; 传感器组件包括一个或多个传感器以检测飞机的操作参数。 它可以进一步包括自动恢复系统,其包括耦合到传感器封装的输入; 耦合到飞机控制器的输出; 处理器,用于监测飞行器的一个或多个运行参数;基于运行参数检测前进推进系统的故障;以及将飞行器转换到垂直推进系统以进行着陆。

    WIND FINDING AND COMPENSATION FOR UNMANNED AIRCRAFT SYSTEMS
    216.
    发明申请
    WIND FINDING AND COMPENSATION FOR UNMANNED AIRCRAFT SYSTEMS 审中-公开
    无人机系统的风力发现和补偿

    公开(公告)号:WO2017184437A1

    公开(公告)日:2017-10-26

    申请号:PCT/US2017/027524

    申请日:2017-04-14

    Abstract: An unmanned aircraft includes a forward propulsion system comprising one or more forward thrust engines and one or more corresponding rotors coupled to the forward thrust engines; a vertical propulsion system comprising one or more vertical thrust engines and one or more corresponding rotors coupled to the vertical thrust engines; a plurality of sensors; and a yaw control system, that includes a processor configured to monitor one or more aircraft parameters received from at least one of the plurality of sensors and to enter a free yaw control mode based on the received aircraft parameters.

    Abstract translation: 无人驾驶飞机包括前推进系统,所述前推进系统包括一个或多个向前推力发动机以及耦合到向前推力发动机的一个或多个对应的转子; 垂直推进系统,其包括一个或多个垂直推力发动机和联接到所述垂直推力发动机的一个或多个对应的转子; 多个传感器; 以及偏航控制系统,所述偏航控制系统包括处理器,所述处理器被配置为监测从所述多个传感器中的至少一个传感器接收的一个或多个飞行器参数,并基于所接收的飞行器参数进入自由偏航控制模式。

    一种电池管理方法、单体电池、飞行控制系统及无人机

    公开(公告)号:WO2017000238A1

    公开(公告)日:2017-01-05

    申请号:PCT/CN2015/082861

    申请日:2015-06-30

    Abstract: 一种电池管理方法、单体电池、飞行控制系统及无人机,可以在单体电池(20)发生故障时,提供电能使得无人机(90)继续运行,提高了无人机(90)的安全性。单体电池(20)的管理方法包括:监测第一电芯单元(201)及第二电芯单元(203)是否发生故障;若第一电芯单元(201)发生故障,则控制第一电芯单元(201)停止供电或充电;若第二电芯单元(203)发生故障,则控制第二电芯单元(203)停止供电或充电。单体电池(20)包括:第一电芯单元(201)、第一控制电路(202)、第二电芯单元(203)及第二控制电路(204),第一控制电路(202)与第一电芯单元(201)电性相连,第二控制电路(204)与第二电芯单元(203)电性相连,第一电芯单元(201)与第二电芯单元(203)并联。

    CONTROL AERIAL MOVEMENT OF DRONE BASED ON LINE-OF-SIGHT OF HUMANS USING DEVICES
    219.
    发明申请
    CONTROL AERIAL MOVEMENT OF DRONE BASED ON LINE-OF-SIGHT OF HUMANS USING DEVICES 审中-公开
    基于使用设备的人的线路识别的控制空气流动

    公开(公告)号:WO2016209225A1

    公开(公告)日:2016-12-29

    申请号:PCT/US2015/037428

    申请日:2015-06-24

    CPC classification number: G08C17/00 B64C2201/14 G05D1/0094

    Abstract: Examples disclosed herein relate to control of a drone. In one example, aerial movement of the drone is controlled. In the example, it is determined, based on a plurality of devices, whether the drone is within a line- of-sight with at least a respective one of a plurality of humans within a physical proximity to a respective one of a the devices.. In the example, the devices are used by the drone to track the humans. In the example, when the drone is determined to lack the !ine-of-sight, aerial movement of the drone is controlled to move the drone to become within the line-of-sight.

    Abstract translation: 本文公开的实例涉及无人机的控制。 在一个示例中,控制无人机的空中运动。 在该示例中,基于多个设备,确定无人机是否处于与物理上接近设备中的相应一个的多个人中的至少一个人的视线内。 在这个例子中,无人机使用这些设备跟踪人类。 在这个例子中,当无人机被确定为缺乏视距时,无人机的空中运动被控制以使无人机移动到视线内。

    DYNAMICALLY ADJUSTABLE SITUATIONAL AWARENESS INTERFACE FOR CONTROL OF UNMANNED VEHICLES
    220.
    发明申请
    DYNAMICALLY ADJUSTABLE SITUATIONAL AWARENESS INTERFACE FOR CONTROL OF UNMANNED VEHICLES 审中-公开
    用于控制无人驾驶车辆的动态可调节状态意识界面

    公开(公告)号:WO2016176093A1

    公开(公告)日:2016-11-03

    申请号:PCT/US2016/028449

    申请日:2016-04-20

    Inventor: WEI, Jerome H.

    Abstract: An apparatus includes an image collection module (130) that monitors at least one parameter to dynamically regulate an amount of data and resolution to be allocated to at least one object in a scene collected from an image data set. A situational awareness interface (SAI) (110) renders a 3-D video of the scene to an operator based on the amount of data and resolution allocated from the image data set by the image collection module (130) and receives operator commands for an unmanned vehicle (UV) that interacts with the scene.

    Abstract translation: 一种装置包括图像采集模块(130),其监视至少一个参数以动态地调节要分配给从图像数据集收集的场景中的至少一个对象的数据和分辨率的量。 基于由图像采集模块(130)设置的图像数据分配的数据量和分辨率的数量和分辨率,场景感知接口(SAI)110将场景的3D视频呈现给操作者,并接收操作员命令 无人驾驶车辆(UV)与场景相互作用。

Patent Agency Ranking