Abstract:
The production of solid lubricant agglomerates by combining solid lubricant powder, an inorganic binder, other fillers if optionally desired, and a liquid to form a mixture, and driving off the liquid to form dry agglomerates which are subsequently classified by size or milled and classified by size to yield agglomerates of a desired size range. These agglomerates are then treated to stabilize the binder, thereby strengthening the binder and rendering it nondispersible in the liquid. The undesired size ranges can be readily recycled because the agglomerates with untreated binder can be reprocessed, thereby promoting high recovery rates.
Abstract:
An object of the present invention is to provide a sliding member which can slide for a longer period of time even in a dry state. In the present invention, the sliding member is provided with a sliding layer 3 containing 1 to 20 vol % of bismuth powder and/or bismuth alloy powder, 20 to 60 vol % of metal powder, and 1 to 20 vol % of a solid lubricant, the sum thereof being not more than 70 vol %, and the balance being a thermosetting resin. Therefore, a large quantity of metal powder and bismuth powder and/or bismuth alloy powder are mixed with the thermosetting resin in the sliding layer 3, so that the thermal conductivity in the sliding layer 3 is improved, and hence heat does not accumulate in a sliding layer portion, by which seizure can be prevented.
Abstract:
A process is disclosed for manufacturing a lubricant composition comprising combining a superabsorbent polymer with a material for decreasing friction between moving surfaces. The superabsorbent polymer absorbs from about 25 to greater than 100 times its weight in water and may comprise a polymer of acrylic acid, an acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft co-polymers thereof or mixtures thereof. A product produced by the process includes the material for decreasing friction comprising a petroleum lubricant containing an additive, water containing an additive, synthetic lubricant, grease, solid lubricant or metal working lubricant, wherein the synthetic lubricant, grease, solid lubricant or metal working lubricant optionally contain an additive. A process comprising controlling the delivery of a lubricant to at least one of two moving surfaces in order to decrease friction between said moving surfaces, is also disclosed. This process includes applying the lubricant composition to at least one of the surfaces. The lubricant composition in this instance comprises a superabsorbent polymer combined with a material for decreasing friction between moving surfaces, wherein the material for decreasing friction comprises a petroleum lubricant, water, synthetic lubricant, grease, solid lubricant or metal working lubricant, and optionally an additive.
Abstract:
A process is disclosed for manufacturing a lubricant composition comprising combining a superabsorbent polymer with a material for decreasing friction between moving surfaces. The superabsorbent polymer absorbs from about 25 to greater than 100 times its weight in water and may comprise a polymer of acrylic acid, an acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft co-polymers thereof or mixtures thereof. A product produced by the process includes the material for decreasing friction comprising a petroleum lubricant containing an additive, water containing an additive, synthetic lubricant, grease, solid lubricant or metal working lubricant, wherein the synthetic lubricant, grease, solid lubricant or metal working lubricant optionally contain an additive. A process comprising controlling the delivery of a lubricant to at least one of two moving surfaces in order to decrease friction between said moving surfaces, is also disclosed. This process includes applying the lubricant composition to at least one of the surfaces. The lubricant composition in this instance comprises a superabsorbent polymer combined with a material for decreasing friction between moving surfaces, wherein the material for decreasing friction comprises a petroleum lubricant, water, synthetic lubricant, grease, solid lubricant or metal working lubricant, and optionally an additive.
Abstract:
Within a method for forming a magnetoresistive (MR) sensor element there is first provided a substrate. There is then formed over the substrate a first magnetoresistive (MR) layer having formed contacting the first magnetoresistive (MR) layer a magnetically biased first magnetic bias layer biased in a first magnetic bias direction with a first magnetic bias field strength. There is also formed separated from the first magnetoresistive (MR) layer by a spacer layer a second magnetoresistive (MR) layer having formed contacting the second magnetoresistive (MR) layer a magnetically un-biased second magnetic bias layer. There is then biased through use of a first thermal annealing method employing a first thermal annealing temperature, a first thermal annealing exposure time and a first extrinsic magnetic bias field the magnetically un-biased second magnetic bias layer to form a magnetically biased second magnetic bias layer having a second magnetic bias field strength in a second magnetic bias direction non-parallel to the first magnetic bias direction while simultaneously partially demagnetizing the magnetically biased first magnetic bias layer to provide a partially demagnetized magnetically biased first magnetic bias layer having a partially demagnetized first magnetic bias field strength less than the first magnetic bias field strength. Finally, there is then annealed thermally through use of a second thermal annealing employing a second thermal annealing temperature and a second thermal annealing exposure time without a second magnetic bias field: (1) the partially demagnetized magnetically biased first magnetic bias layer layer to form a remagnetized partially demagnetized first magnetic bias layer having a remagnetized partially demagnetized first netic bias field strength greater than the partially demagnetized first magnetic bias field strength; and (2) the magnetically biased second magnetic bias layer to form a further magnetically biased second magnetic bias layer having a further magnetized second magnetic bias field strength greater than the second magnetic bias field strength.
Abstract:
A process is disclosed for manufacturing a lubricant composition comprising combining a superabsorbent polymer with a material for decreasing friction between moving surfaces. The superabsorbent polymer absorbs from about 25 to greater than 100 times its weight in water and may comprise a polymer of acrylic acid, an acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft co-polymers thereof or mixtures thereof. A product produced by the process includes the material for decreasing friction comprising a petroleum lubricant containing an additive, water containing an additive, synthetic lubricant, grease, solid lubricant or metal working lubricant, wherein the synthetic lubricant, grease, solid lubricant or metal working lubricant optionally contain an additive. A process comprising controlling the delivery of a lubricant to at least one of two moving surfaces in order to decrease friction between said moving surfaces, is also disclosed. This process includes applying the lubricant composition to at least one of the surfaces. The lubricant composition in this instance comprises a superabsorbent polymer combined with a material for decreasing friction between moving surfaces, wherein the material for decreasing friction comprises a petroleum lubricant, water, synthetic lubricant, grease, solid lubricant or metal working lubricant, and optionally an additive.
Abstract:
This invention relates to a threaded joint for steel pipes which comprises a pin and a box each having a contact surface including a threaded portion and an unthreaded metal contact portion and which guarantees galling resistance and gas tightness in a stable manner without application of a compound grease. A solid lubricating coating comprising a lubricating powder (e.g., molybdenum disulfide) and an organic or inorganic binder is formed on the contact surface of at least one of the pin and the box. The proportion of area of a cross section along the thickness of the solid lubricating coating which is occupied by secondary particles of the lubricating powder having an equivalent circular diameter of 15-60 nullm is from 5-90%. Alternatively, the solid lubricating coating comprises, in addition to the lubricating powder, a fibrous filler (e.g., inorganic whiskers) in such an amount that the mass ratio of the fibrous filler to the binder is 0.01-0.5. As a result, galling resistance is improved, particularly at high temperatures.
Abstract:
A lubricant coating disposed between a substrate and a counter surface comprises a reaction layer immediately adjacent the substrate. A bonding layer is immediately adjacent the reaction layer, with the bonding layer comprising a first composition. A low friction, lubricious layer is immediately adjacent the bonding layer, with the lubricious layer comprising a second composition that is different from the first composition.
Abstract:
An article having a multiphase composite lubricant coating of a hard refractory matrix phase of titanium nitride dispersed with particles of a solid lubricating phase of molybdenum disulfide is prepared by heating the article to temperatures between 350.degree. and 850.degree. C. in a reaction vessel at a reduced pressure and passing a gaseous mixture of Ti((CH.sub.3).sub.2 N).sub.4, MoF.sub.6, H.sub.2 S and NH.sub.3 over the heated article forming a multiphase composite lubricant coating on the article.
Abstract:
Lubricant composition for use on workpieces in the hot forming of metals, which contains: (a.sub.1) 0 to 80 percent by weight of a glass powder, (a.sub.2) 0 to 50 percent by weight of a glass frit whereby the content of at least one component (a.sub.1) or (a.sub.2) in the lubricant composition is not 0 percent by weight, (b) 10 to 25 percent by weight of natural or synthetic graphite, (c) 5 to 20 percent by weight of one or more alkali metal silicates of the general formula Me.sub.2 O.n SiO.sub.2, where Me is lithium, potassium or sodium and n is a number between 1 and 4, (d) 1 to 6 percent by weight of a water-soluble sodium polymetaphosphate, (e) 0 to 3 percent by weight of a water-insoluble sodium polymetaphosphate,(f) 0.5 to 4 percent by weight of a thickener, and (g) 0 to 1 percent by weight of borax.