Abstract:
In the spectroscopy module 1, a light detecting element 4 is provided with a light passing opening 4b through which light made incident into a body portion 2 passes. Therefore, it is possible to prevent deviation of the relative positional relationship between the light passing opening 4b and a light detection portion 4a of the light detecting element 4. Further, an optical element 7, which guides light made incident into the body portion 2, is arranged at the light passing opening 4b. Therefore, light, which is to be made incident into the body portion 2, is not partially blocked at a light incident edge portion of the light passing opening 4b, but light, which is to be made incident into the body portion 2, can be guided securely. Therefore, according to the spectroscopy module 1, it is possible to improve the reliability.
Abstract:
A terahertz wave detection device includes a wavelength filter transmitting terahertz waves having a predetermined wavelength, and a detection portion detecting the terahertz waves having the predetermined wavelength that have passed through the wavelength filter by converting the terahertz waves into heat, wherein the wavelength filter includes a metal layer having a plurality of holes communicating with an incident surface onto which the terahertz waves are incident and an emission surface from which the terahertz waves having the predetermined wavelength are emitted, and a dielectric portion filling in the plurality of holes and made of a dielectric, wherein the plurality of holes are formed with a predetermined pitch along a direction that is perpendicular to a normal line of the incident surface.
Abstract:
Optical radiation from a sample is received by the slit and it is passed through an aperture in a reflective plane of a folding mirror towards a curved reflective surface of a collimating mirror. The slit and the curved reflective surface have a common optical axis. The reflective plane and the curved reflective surface face each other. The optical radiation passed through the folding mirror is collimated by the curved reflective surface. The collimated optical radiation is directed to the reflective plane of the folding mirror by the curved reflective surface. The collimated optical radiation is reflected in a direction other than the common optical axis of the slit and the curved reflective surface by the reflective plane.
Abstract:
Provided is a device for determining the surface topology and associated color of a structure, such as a teeth segment, including a scanner for providing depth data for points along a two-dimensional array substantially orthogonal to the depth direction, and an image acquisition means for providing color data for each of the points of the array, while the spatial disposition of the device with respect to the structure is maintained substantially unchanged. A processor combines the color data and depth data for each point in the array, thereby providing a three-dimensional color virtual model of the surface of the structure. A corresponding method for determining the surface topology and associated color of a structure is also provided.
Abstract:
In a spectroscopy module 1, a light passing hole 50 through which a light L1 advancing to a spectroscopic portion 4 passes is formed in a light detecting element 5. Therefore, it is possible to prevent the relative positional relationship between the light passing hole 50 and a light detecting portion 5a of the light detecting element 5 from deviating. Moreover, the light detecting element 5 is bonded to a front plane 2a of a substrate 2 with an optical resin adhesive 63. Thus, it is possible to reduce a stress generated onto the light detecting element 5 due to a thermal expansion difference between the light detecting element 5 and the substrate 2. Additionally, on the light detecting element 5, a first pool portion 101 is formed so as to be located at least between the light detecting portion 5a and the light passing hole 50 when viewed from a direction substantially perpendicular to the front plane 2a. Thus, when the light detecting element 5 is attached to the substrate 2 via the optical resin adhesive 63, the optical resin adhesive 63 is pooled to remain at the first pool portion 101. Thus, the optical resin adhesive 63 is prevented from penetrating into the light passing hole 50.
Abstract:
The present subject matter relates to methods of high-speed analysis of product samples during production of the product. Light is directed to a portion of a product under analysis and reflected from or transmitted through the product toward optical detectors. Signals from the optical detectors are compared to determine characteristics of the product under analysis. Temperature within the monitoring system may be monitored in order to provide compensation for the signals produced by the optical detectors. The products under analysis may be stationary, moved by an inspection point by conveyor or other means, or may be contained within a container, the container including a window portion through which the product illuminating light may pass.
Abstract:
The present invention provides a highly reliable spectral module. The spectral module (1) of the present invention comprises a substrate (2) for transmitting therethrough light incident on one surface (2a); a lens unit (3), having an entrance surface (3a) opposing the other surface (2b) of the substrate (2), for transmitting therethrough the light entering from the entrance surface (3a) after passing through the substrate (2); a spectroscopic unit (4), formed with the lens unit (3), for spectrally resolving and reflecting the light having entered the lens unit (3); a photodetector (4) for detecting the light reflected by the spectroscopic unit (4); and a support unit (8), disposed between the other surface (2b) and the entrance surface (3a), for supporting the lens unit (3) against the substrate (2). Since the support unit (8) forms a gap between the other surface (2b) and the entrance surface (3a) in the spectral module (1), the other surface (2b) and the entrance surface (3a) are prevented from coming into contact with each other and causing damages, whereby the spectral module (1) can improve its reliability.
Abstract:
The present subject matter relates to methods of high-speed analysis of product samples during production of the product. Light is directed to a portion of a product under analysis and reflected from or transmitted through the product toward optical detectors. Signals from the optical detectors are compared to determine characteristics of the product under analysis. Temperature within the monitoring system may be monitored in order to provide compensation for the signals produced by the optical detectors. The products under analysis may be stationary, moved by an inspection point by conveyor or other means, or may be contained within a container, the container including a window portion through which the product illuminating light may pass.
Abstract:
A device for determining the surface topology and associated color of a structure, such as a teeth segment, includes a scanner for providing depth data for points along a two-dimensional array substantially orthogonal to the depth direction, and an image acquisition means for providing color data for each of the points of the array, while the spatial disposition of the device with respect to the structure is maintained substantially unchanged. A processor combines the color data and depth data for each point in the array, thereby providing a three-dimensional color virtual model of the surface of the structure. A corresponding method for determining the surface topology and associated color of a structure is also provided.
Abstract:
In a spectroscopy module 1, a light passing hole 50 through which a light L1 advancing to a spectroscopic portion 4 passes is formed in a light detecting element 5. Therefore, it is possible to prevent the relative positional relationship between the light passing hole 50 and a light detecting portion 5a of the light detecting element 5 from deviating. Moreover, the light detecting element 5 is bonded to a front plane 2a of a substrate 2 with an optical resin adhesive 63. Thus, it is possible to reduce a stress generated onto the light detecting element 5 due to a thermal expansion difference between the light detecting element 5 and the substrate 2. Additionally, on the light detecting element 5, a first pool portion 101 is formed so as to be located at least between the light detecting portion 5a and the light passing hole 50 when viewed from a direction substantially perpendicular to the front plane 2a. Thus, when the light detecting element 5 is attached to the substrate 2 via the optical resin adhesive 63, the optical resin adhesive 63 is pooled to remain at the first pool portion 101. Thus, the optical resin adhesive 63 is prevented from penetrating into the light passing hole 50.