Abstract:
Provided are a field emission device and a method of manufacturing the same. The field emission device includes an anode electrode and a cathode electrode which are opposite to each other, a counter layer provided on the anode electrode, and a field emitter provided on the cathode electrode and facing the counter layer. Herein, the field emitter includes a carbon nanotube emitting cold electrons and a photoelectric material emitting photo electrons.
Abstract:
Disclosed is a photoelectric surface including: a first group III nitride semiconductor layer that produces photoelectrons according to incidence of ultraviolet rays; and a second group III nitride semiconductor layer provided adjacent to the first group III nitride semiconductor layer and made of a thin-film crystal having c-axis orientation in a thickness direction, the second group III nitride semiconductor layer having an Al composition higher than that of the first group III nitride semiconductor layer.
Abstract:
In the case of a thick light-absorbing layer 2, a phenomenon of a decrease in the time resolution occurs. However, when the thickness of the light-absorbing layer 2 is limited, a portion of low electron concentration in one electron group is cut out, and hence overlap regions of adjacent electron concentration distributions decrease. Therefore, by shortening the transit time necessary for the passage of electrons, regions of overlapping electron distributions due to diffusion can also be suppressed. Furthermore, the strength of an electric field within a light-absorbing layer can be increased by thinning the light-absorbing layer. Therefore, the time resolution of infrared rays can be remarkably improved by a synergistic action of these effects. If it is assumed that the time resolution is 40 ps (picoseconds), for example, when the thickness of a light-absorbing layer is 1.3 nullm which is nearly equal to the wavelength of infrared, then a possible time resolution is 7.5 ps when this thickness is 0.19 nullm.
Abstract:
A cathode structure for an image intensifier tube operates to extend the spectral range of an image intensifier to the short wavelength infrared (SWIR) range of the electromagnetic spectrum, which is between 1.0 to 1.75 &mgr;m. The cathode structure utilizes a multi-layer structure consisting of a layer of GaSb disposed upon a layer of GaAs. The layers form a heterojunction therebetween where the GaSb material absorbs radiation and the GaAs is for emission characteristics. The doping profiles in each material are used to maximize the effects of band gap offsets of the heterojunction as well as provide a nearly flat conduction band profile for the cathode structure. The condition of nearly flat conduction band is enhanced by the use of blocking contacts at the emission surface of the cathode, where a bias is applied.
Abstract:
A photocathode having a UV glass substrate and a laminate composed of a SiO2 layer, a GaAlN layer, a Group III-V nitride semiconductor layer and an AlN buffer layer provided on the UV glass substrate in succession. The UV glass substrate, which absorbs infrared rays, can be heat treated at a high speed by photoheating. Further, the UV glass substrate, which is transparent to ultraviolet rays, permits ultraviolet rays to be introduced into the Group III-V nitride semiconductor layer where photoelectric conversion occurs.
Abstract:
A device for the high-speed analysis of photon- or particle-generated image data or for the high-speed energy-discrimination analysis of photon- or particle-counting data. A sensor collects the photons or particles on an array of solid state detectors, as electrical analog signals, and stores the analog-signal information on capacitors of readout arrays associated with the detector arrays. Image-related signals are transferred to integrated circuit chips containing an array of correction processor unit cells. Corrected signals are transferred to an analog image processor. Particle-counting data is transferred directly from the readout array chips to the analog image processor having circuitry for implementing an image processing or energy discrimination algorithm.
Abstract:
A device for the high-speed analysis of photon- or particle-generated image data or for the high-speed energy-discrimination analysis of photon- or particle-counting data. The device uses a sensor that collects the photons or particles on an array of solid state detectors, as electrical analog signals, and stores the analog-signal information on capacitors of readout arrays associated with the detector arrays. Integration of the photon or particle flux signals on the readout arrays proceeds for a given time frame and then image-related signals are transferred to an analog correction processor. The analog correction processor is comprised of one or more integrated circuit chips where each chip contains an array of correction processor unit cells. In these unit cells signals are corrected, in parallel, for gain and offset nonuniformities in the detection and processing chain. Corrections to all the signals are made in a time frame or less and the information is then transferred to an analog image processor. Particle-counting data is transferred directly from the readout array chips to the analog image processor. The analog image processor is comprised of one or more integrated circuit chips where each chip is made up of an array of image processor unit cells. Each unit cell contains circuitry for implementing an image processing or energy discrimination algorithm, and circuitry for outputting the signals and/or the position of only those unit cells for which the algorithm is satisfied. The analog image processor chip may also contain circuitry that counts the number of cells for which the algorithms have been satisfied. The analog image processor implements the algorithm and outputs the data in a time frame or less.
Abstract:
A process of producing a highly spin-polarized electron beam, including the steps of applying a light energy to a semiconductor device comprising a first compound semiconductor layer having a first lattice constant and a second compound semiconductor layer having a second lattice constant different from the first lattice constant, the second semiconductor layer being in junction contact with the first semiconductor layer to provide a strained semiconductor heterostructure, a magnitude of mismatch between the first and second lattice constants defining an energy splitting between a heavy hole band and a light hole band in the second semiconductor layer, such that the energy splitting is greater than a thermal noise energy in the second semiconductor layer in use; and extracting the highly spin-polarized electron beam from the second semiconductor layer upon receiving the light energy. A semiconductor device for emitting, upon receiving a light energy, a highly spin-polarized electron beam, including a first compound semiconductor layer formed of gallium arsenide phosphide, GaAs.sub.1-x P.sub.x, and having a first lattice constant; and a second compound semiconductor layer provided on the first semiconductor layer, the second semiconductor layer having a second lattice constant different from the first lattice constant and a thickness, t, smaller than the thickness of the first semiconductor layer.
Abstract:
The present invention provides a photoemission device excellent in quantum efficiency of photoelectric conversion, a high-sensitive electron tube employing it, and a high-sensitive photodetecting apparatus. A photoemission device of the present invention is arranged to have a photon absorbing layer for absorbing incident photons to excite photoelectrons, an insulator layer layered on one surface of the photon absorbing layer, a lead electrode layered on the insulator layer, and a contact formed on the other surface of the photon absorbing layer to apply a predetermined polarity voltage between the lead electrode and the other surface of the photon absorbing layer, whereby the photoelectrons excited by the incident photons entering the photon absorbing layer and moving toward the one side are made to be emitted by an electric field formed between the lead electrode and the one surface by the predetermined polarity voltage.
Abstract:
An electron source includes a negative electron affinity photocathode on a light-transmissive substrate and a light beam generator for directing a light beam through the substrate at the photocathode for exciting electrons into the conduction band. The photocathode has at least one active area for emission of electrons with dimensions of less than about two micrometers. The electron source further includes electron optics for forming the electrons into an electron beam and a vacuum enclosure for maintaining the photocathode at high vacuum. In one embodiment, the active emission area of the photocathode is defined by the light beam that is incident on the photocathode. In another embodiment, the active emission area of the photocathode is predefined by surface modification of the photocathode. The source provides very high brightness from an ultra-small active emission area of the photocathode.