Abstract:
A capacitive discharge circuit includes a line having a capacitance, a switched capacitor circuit including a capacitor, a switched circuit coupled to the line, and a voltage regulator coupled between the switched capacitor circuit and the switched circuit. A controller operates the switched capacitor circuit and switched circuit to in a first phase, charge the capacitor by coupling the capacitor between a common mode and a power supply, and in a second phase, discharge the capacitor by coupling the voltage regulator in series with the capacitor between the power supply node a ground. The controller is also configured to in a third phase, charge the capacitor by coupling the capacitor between the common mode and the power supply, and in a fourth phase, share charge between the line and the capacitor by coupling the voltage regulator and the capacitor in series between the line and the ground.
Abstract:
An active stylus is capacitively coupled to a capacitive touch panel for communication. The active stylus operates in a wait mode to receive initial communications from the panel. In response to such receipt, the active stylus synchronizes to a repeating communications frame implementing time division multiplexing. Communications from the active stylus to the panel include: information communications; synchronization communications and communications specific for columns and/or rows of the panel. Communications from the panel to the active stylus may be addressed uniquely to the stylus or commonly to a group of styluses.
Abstract:
A touch panel includes capacitive sensing electrodes and a touch controller operates in a first operating mode to detect a touch location on the touch panel. In a second operating mode, the touch controller transmits a modulated data signal through the touch panel to an active stylus. Each electrode is driven by a line driver circuit. A control circuit selectively actuates first ones of the line driver circuits to pass the modulated data signal to corresponding first ones of the electrodes which do not pass through a region of the touch panel associated with the location of the detected touch. Simultaneously, the control circuit selectively actuates second ones of the line driver circuits, different from said first ones of the line driver circuits, to ground corresponding second ones of the electrodes which do pass through the region of the touch panel associated with the location of the detected touch.
Abstract:
A touch panel includes a plurality of drive lines, a plurality of orthogonal sense lines, and a plurality of sensors. A method of controlling the touch panel to detect touches includes simultaneously applying a drive signal to each of a group of drive lines of the touch panel. Each of the drive signals is applied to a corresponding drive line in the group during a time slot and all the applied drive signals having the same electrical characteristics over the time slot. The method includes sensing sense signals generated on the sense lines in response to the applied drive signals and processing the sense signals to detect touches of the touch panel.
Abstract:
Apparatus and methods to measure capacitance changes for a touch-sensitive capacitive matrix are described. Charge-removal circuits and measurement techniques may be employed to cancel deleterious effects of parasitic capacitances in the touch-sensitive capacitive matrix. Capacitively switching a supply during timed charge removal may be used to cancel unwanted effects due to clock jitter. The apparatus and methods can improve signal-to-noise characteristics, sensitivity, and/or dynamic range for capacitive measurements relating to touch-sensitive capacitive devices.
Abstract:
Embodiments of the present disclosure are directed to techniques for adjusting the amplitude of a digital audio signal in the frequency domain to control the perceived loudness of the audio signal at a desired level. In one embodiment, a method first adjusts the audio signal to a desired loudness level by applying an adaptive wideband gain and thereafter a multi-band compression is applied to further reduce a dynamic range of the audio signal, and noise analysis and temporal masking operations are also performed to provide a pleasant sound for a listener or listeners.
Abstract:
Embodiments reduce the complexity of speaker dependent speech recognition systems and methods by representing the code phrase (i.e., the word or words to be recognized) using a single Gaussian Mixture Model (GMM) which is adapted from a Universal Background Model (UBM). Only the parameters of the GMM need to be stored. Further reduction in computation is achieved by only checking the GMM component that is relevant to the keyword template. In this scheme, keyword template is represented by a sequence of the index of best performing component of the GMM of the keyword model. Only one template is saved by combining the registration template using Longest Common Sequence algorithm. The quality of the word model is continuously updated by performing expectation maximization iteration using the test word which is accepted as keyword model.
Abstract:
A touch screen controller provides a host interrupt to a host device operating in a low power consumption mode. The touch screen controller uses gesture templates to detect gestures input via a touch screen. Each gesture template is associated with an event identifier, and each event identifier is associated an application. Each gesture template includes a template identifier, a matching threshold, a criterion, and coordinates corresponding to locations on the touch screen panel. If at least one of the coordinates corresponding to a gesture input via the touch screen satisfies the criterion included in a particular gesture template, the touch screen controller provides a host interrupt with the event identifier corresponding to that gesture template to the host device. In response to receiving the host interrupt with the event identifier, the host device exits the low power consumption mode and opens the application associated with the event identifier.
Abstract:
An electronic device includes a processor that acquires touch data values corresponding to different locations of a touch display, and identifies an island in the touch data that has touch data values acquired from adjacent locations of the touch display that indicate a potential touch. A first area of the island is determined from touch data values that exceed a first threshold value, and a second area of the island is determined from touch data values that exceed a second threshold value. If the first area is less than a multiple of the second area, coordinates of a location of the island are determined from the touch data values indicating the potential touch. If the first area is at least the multiple of the second area, coordinates of a location of the island are determined from the touch data values indicating the potential touch that exceed a third threshold value.
Abstract:
A touch screen device is configured with rows of conductors capable of receiving wireless signals from a stylus. When the stylus touches the touch screen, the stylus emits multiple wireless signals in different directions. The conductors receiving the emitted wireless signals provide the signals to circuitry that filters, amplifies, and digitizes the wireless signals, as received at each conductor. The magnitude of each conductor's received wireless signal is computed, and the computed magnitudes are used to determine the location of the stylus on the touch screen surface. The stylus is assumed to be closer to conductors receiving stronger signals than those receiving weaker signals.