Abstract:
An improved airship having a plurality of resilient gasbags & gas containers, a straight fuselage tubular hull with an inner air passageway & propulsion means located therein, connecting air inlet & outlet funnels fore & aft, with air deflector cones axially positioned therein, and a plurality of bifurcated winged air control surfaces axially affixed vertically & horizontally across the air inlet & outlet funnels fore & aft; further, a plurality of vectored air passageways & mechanisms, and propulsion, reverse, & directional rocket thrusters, positioned fore & aft, top, bottom, port & starboard; thereby providing improved speed, maneuverability, efficiency, adverse weather capability, reduced forward air resistance, & rearward drag; furthermore space, outer & inner atmosphere ingress & egress.
Abstract:
In one example, a free-flying tethered airship system includes an upper airship adapted to tailor its lift and drag, a lower airship adapted to tailor its lift and drag, and a tether connecting the upper airship to the lower airship such that the upper airship is at least one kilometer above the lower airship. The upper airship is configured to be equiliberally buoyant, while carrying the tether, in a first altitude range. The lower airship is configured to be equiliberally buoyant in a second altitude range, the first altitude range being higher than the second altitude range. A method for stationkeeping of a free-flying tethered airship system is also provided.
Abstract:
A wind-based power generating system provides a wind energy converter for converting wind energy into another form of energy using a lighter-than-air craft configured to produce a positive net lift. The net lift includes both a net aerodynamic lift and a net buoyant lift. A tethering mechanism is configured to restrain the lighter-than-air craft with respect to the ground. The lighter-than-air craft defines an interior volume for containing a lighter-than-air gas, and the lighter-than-air craft has a fore section and an aft section. The tethering system has at least one attachment point on the fore section of the lighter-than-air craft and at least one attachment point on the aft section of the lighter-than-air craft. The lighter-than-air craft provides a stable aerodynamic moment with respect to a yaw axis about a center-of-mass of the lighter-than-air craft. The craft can be formed in a variety of aerodynamic profiles/shapes.
Abstract:
The present invention relates to an air vehicle such as an airship, which has a rounded top portion, and the bottom portion of which has a substantially planar shape (711), specifically consisting of a region which has a smaller inclination, which is referred to as a bottom surface (S2), and the surface area of which is larger or even much larger than that of the intermediate region having a greater inclination, referred to as an intermediate surface (S1). Said general shape produces, due to relative wind (69), a resulting overall downward force (67) near the ground. According to the invention, said vehicle also includes a device for anchoring same to the ground (722), said anchoring device being stationary or controllable from said vehicle, located at the front portion of said vehicle, and projecting downward, in particular a ram (722, 9) including a portion (921, 922) which can be expanded by applying a bar (924) against a translatably movable shoulder (923). The invention also relates to a landing method implementing such a vehicle. Said method involves, as a result of the downward force (67) with compensation (65) by maintaining a nose-up attitude (T711), downward flight until a rear portion (730) of the vehicle makes contact with the ground, followed by reducing the nose-up angle until the anchoring device makes contact with the ground, in particular with a ram (722, 9) sinking into the ground. Preferably, the method also includes docking, in particular by means of an expandable ram (9), while the vehicle is applied against the ground due to the downward force.
Abstract:
Die vorliegende Erfindung betrifft ein unbemanntes Luftfahrzeug, ein unbemanntes Luftfahrtsystem und ein Verfahren zur Kollisionsvermeidung beim Fliegen eines unbemannten Luftfahrzeugs. Um eine verbesserte Kollisionsvermeidung zur Verfügung zu stellen, ist ein unbemanntes Luftfahrzeug (10) vorgesehen, das ein Auftriebs- und Vortriebssystem (12) und ein Flugkontrollsystem (22) mit einer Flugkontrolleinheit (24), einem Navigationssystem (26) und einem Aktuatoriksystem (28) aufweist. Die Flugkontrolleinheit weist eine Autopiloteinrichtung (30) auf. Die Flugkontrolleinheit ist vorgesehen, anhand von Daten aus dem Navigationssystem und/oder der Autopiloteinrichtung Steuerkommandos zu berechnen, die dem Aktuatoriksystem zuführbar sind zur Ansteuerung des Auftriebs- und Vortriebssystems. Weiter ist ein Kollisionswamsystem (32) vorgesehen, das mit dem Flugkontrollsystem verbunden ist, wobei das Kollisionswamsystem eine Kollisionssituation erfasst und Kollisionsvermeidungsdaten (34) zur Verfügung stellt. Außerdem ist eine Verbindung (36) zwischen dem Kollisionswamsystem und der Autopiloteinrichtung vorgesehen, um anhand der Kollisionsvermeidungsdaten durch die Autopiloteinrichtung ein Ausweichmanöver zu veranlassen.
Abstract:
Eine Vorrichtung zur Entfernung von Schadgasen aus der Atmosphäre besteht aus einer in der Erdatmosphäre autonom operierenden Plattform, deren Gehäuse in Leichtbauweise konstruiert und mit Einlässen für die umgebende Atmosphäre sowie mit Auslässen für die aufbereiteten Produkte ausgestattet ist. Im Inneren des Gehäuses sind Einheiten zur Gasextrahierung und -separation sowie zur Speicherung und Aufbereitung von flüssigen und gasförmigen Produkten angeordnet. Die Energie zum Betrieb der einzelnen Einheiten dieses geschlossenen kryogenen Kreislaufsystems wird dabei von Solarzellen erzeugt.
Abstract:
An airship (10) may include a hull (22) substantially shaped as an oblate spheroid, one or more frame members (120, 122, 124) defining a support structure (20), wherein the support structure forms at least a partial support for the hull, at least one horizontal stabilizing member (315) operably coupled to a lower surface of the airship, and at least one horizontal stabilizing member (315) having a first end and a second end. The at least one horizontal stabilizing member (315) may define an anhedral configuration. The airship may also include a vertical stabilizing member (310) having a first end pivotally coupled to the airship and a second end oriented to remain below an upper surface of the airship. The vertical stabilizing member (310) may be configured to pivot within a vertical plane, and the first end of the vertical stabilizing member and the first end of the at least one horizontal stabilizing member may • be operably coupled to one another.
Abstract:
A hybrid airship (10) including an outer shell (11), a plurality of helium filled gas envelopes (19), and an all-electric propulsion system (50) can have a high-aspect ratio wing shape. In some embodiments, the hybrid airship (10) may be launched using buoyancy lift alone and aerodynamic lift may be provided by the all-electric propulsion system (50). In one aspect, a photovoltaic array (52) and a high energy density power storage system (51) may be combined to power the propulsion system (50) making the propulsion system (50) regenerative. The high-aspect ratio wing shape provides low drag, and can allow the hybrid airship (10) to fly at an altitude of at least about 100,000 ft (30480 m). By continuously recharging the power storage system (51), the hybrid airship (10) in accordance with some embodiments can stay aloft for months or even years. The hybrid airship (10) may function as a military intelligence, surveillance, and reconnaissance and communications relay platform.