Abstract:
An unmanned rotor carried aerial vehicle comprises a propulsion unit (5) and a carrier (7) suspended from the propulsion unit. The propulsion unit (5) is connected to the carrier (7) via a cardan-like joint (9) for permitting limited tilting of the propulsion unit relative to the carrier in two orthogonal directions corresponding to the roll and pitch directions of the vehicle and for preventing relative movement between the propulsion unit and the carrier in the yaw direction of the vehicle.
Abstract:
본기술은드론에관한것으로, 더욱상세하게는압축기체를분사하여비행되는드론에관한것이다. 일실시예에서, 터보제트드론이개시(disclosure)된다. 터보제트드론은외부의기체를흡입하여배출하는엔진부를포함한다. 상기엔진부에서배출되는기체가압축되어외부로배출되는추진부를포함한다. 상기엔진부에서배출되는기체가압축되어선택적으로외부로배출되는터보추진부를포함한다. 본명세서에서개시하는터보제트드론은터보추진부에의해서추진부와다른추가추진력이제공됨으로써비행출력이향상될수 있다. 그리고터보조절부에의해서터보배출부의크기가조절되어추가추진력의강약이제어되는바, 터보제트드론의방향을제어할수 있다. 또한, 하나이상의팬이중첩된터보제트팬을포함하는엔진부에의해서더욱강한공기를배출할수 있어서, 비행출력이더욱향상될수 있다.
Abstract:
본 기술은 드론에 관한 것으로, 더욱 상세하게는 압축기체를 분사하여 비행되는 드론에 관한 것이다. 일 실시 예에서, 터보 제트 드론이 개시(disclosure)된다. 터보 제트 드론은 외부의 기체를 흡입하여 배출하는 엔진부를 포함한다. 상기 엔진부에서 배출되는 기체가 압축되어 외부로 배출되는 추진부를 포함한다. 상기 엔진부에서 배출되는 기체가 압축되어 선택적으로 외부로 배출되는 터보추진부를 포함한다. 본 명세서에서 개시하는 터보 제트 드론은 터보추진부에 의해서 추진부와 다른 추가 추진력이 제공됨으로써 비행출력이 향상될 수 있다. 그리고 터보조절부에 의해서 터보배출부의 크기가 조절되어 추가 추진력의 강약이 제어되는바, 터보 제트 드론의 방향을 제어할 수 있다. 또한, 하나 이상의 팬이 중첩된 터보제트팬을 포함하는 엔진부에 의해서 더욱 강한 공기를 배출할 수 있어서, 비행출력이 더욱 향상될 수 있다.
Abstract:
A hybrid propulsion aircraft (100) is described having a distributed electric propulsion system. The distributed electric propulsion system includes a turbo shaft engine (112) that drives one or more generators (116) through a gearbox (132). The generator (116) provides AC power to a plurality of ducted fans (108, 110), each being driven by an electric motor (506). The ducted fans (108, 110) may be integrated with the hybrid propulsion aircraft's wings (104, 106). The wings (104, 106) can be pivotally attached to the fuselage (102), thereby allowing for vertical take-off and landing. The design of the hybrid propulsion aircraft (100) mitigates undesirable transient behavior traditionally encountered during a transition from vertical flight to horizontal flight. Moreover, the hybrid propulsion aircraft (100) offers a fast, constant-altitude transition, without requiring a climb or dive to transition. It also offers increased efficiency in both hover and forward flight versus other VTOL aircraft and a higher forward max speed than traditional rotorcraft.
Abstract:
A flying wing vertical take-off and landing (VTOL) aircraft is provided and includes an empennageless-fuselage from which foldable wings extend outwardly, an empennageless-nacelle supported on each of the wings and a rigid rotor propeller disposed on each empennageless-nacelle, each of the propellers being drivable to rotate about only a single rotational axis defined along a longitudinal axis of the corresponding empennageless-nacelle and being fully cyclically controllable.
Abstract:
Vertical Take Off and Landing Unmanned Aerial Vehicle (VTOL UAV) with Twin Yaw Control System (TYCS). TYCS consists of auxiliary rotors (6) which are connected to the main rotor head frame. They acquire rotational forces from a gearbox (3) and control the movement of VTOL UAV to left- and right-directions as well as produce an anti-torque to counter the torque induced from the rotation of the main rotor (5) around the main rotor head (4) at certain rotational velocity until sufficient lift is created in vertical direction to lift VTOL UAV up and down in the air vertically. Apart from this, TYCS also helps balance the torque around the vertical axis created by the rotation of the main rotor (5). This results in the upright alignment of VTOL UAV parallel to the vertical axis at all times and therefore there is no need for a trim from external pilot or automatic flight control system while flying.
Abstract:
Die Erfindung betrifft ein Hybridflugzeug (F). Hierbei wird für eine Energieerzeugungseinheit (14), die eine Verbrennungskraftmaschine (34) und einen mit dieser über eine Welle gekoppelten elektrischen Generator (30) umfasst, eine geeignete Position für einen Einbau ins Flugzeug ermittelt. Für eine Schuberzeugungseinheit (12), die einen Elektromotor (24) und einen mit diesem über eine Welle (22) gekoppelten Propeller (20) umfasst, wird unabhängig von der Position der Energieerzeugungseinheit (14) ebenfalls eine Position ermittelt. Die Schuberzeugungseinheit (12) und die Energieerzeugungseinheit (14) werden dann beim Herstellen des Flugzeugs (F) an der jeweils für sie ermittelten Position angeordnet. Der Generator (30) wird anschließend mit dem Elektromotor (24) mittels einer elektrischen Übertragungseinrichtung (16) gekoppelt.