Abstract:
A vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV) storage and launch system includes a UAV pod (108) having a UAV pod processor (114) and a UAV (102) selectively enclosed in the UAV pod (108), the UAV (102) having only two rotors (202).
Abstract:
Modular nacelles to provide vertical takeoff and landing (VTOL) capabilities to fixed-wing aerial vehicles, and associated systems and methods are disclosed. A representative system includes a nacelle, a power source carried by the nacelle, and multiple VTOL rotors carried by the nacelle and coupled to the power source. The system can further include an attachment system carried by the nacelle and configured to releasably attach the nacelle to an aircraft wing.
Abstract:
A VTOL aircraft includes at least one puller rotor and at least one pusher rotor. The VTOL aircraft, for example, may include three puller rotors and one pusher rotor. The combination of static puller and pusher rotors allows the rotors to remain in a fixed orientation (i.e., no moving mechanical axes are required) relative to the wings and fuselage of the VTOL aircraft, while being able to transition the aircraft from a substantially vertical flight path to a substantially horizontal flight path.
Abstract:
착륙이 용이한 무인비행체가 제공되며, 무인비행체는 방향을 전환하는 프로펠러, 상기 프로펠러를 지지하는 프로펠러 타워, 상기 프로펠러 타워에 연결되어 있는 동체, 상기 동체의 수평축을 기준으로 좌우가 대칭이며, 상기 동체의 무게중심부에 한 쌍의 통공을 포함하는 주날개, 상기 한 쌍의 통공 내부에 각각 위치하는 한 쌍의 보조날개, 그리고 상기 한 쌍의 보조날개를 관통하며 상기 주날개에 고정되어 있는 기준축에 연결되어 있으며, 상기 한 쌍의 보조날개의 경사각도를 제어하는 액츄에이터(actuator)를 포함한다.
Abstract:
Изобретение относится к авиационной технике, а именно к летательным аппаратам, способным совершать обычный взлет и посадку с разбегом и пробегом (по-самолетному), и вертикальный взлет и посадку. Технический результат, на достижение которого направлено изобретение, заключается в улучшении конструктивно-силовой компоновки, а также расширить номенклатуру полезной нагрузки, например, негабаритные грузы. Летательный аппарат содержит планер, включающий крыло (1), две разнесенные продольные балки (2), горизонтальное оперение (3) и вертикальное оперение (4). Крыло (1) соединено с продольными балками (2). На концах продольных балок (2) расположены силовые установки, включающие двигатели и поворотные воздушные винты (5), имеющие возможность под действием приводов поворачиваться, изменяя вектор создаваемой ими силы с горизонтального направления на вертикальное и наоборот. Горизонтальное оперение (3) может располагаться как в хвостовой части (нормальная аэродинамическая схема), так и в носовой части (аэродинамическая схема «утка»). Полезная нагрузка размещается в съемном контейнере (7), закрепляемом на пилоне (9) под крылом (1) в центре тяжести ЛА.
Abstract:
An unmanned aerial launch vehicle (UAV) launch apparatus is disclosed that includes a UAV (400) having an exterior surface, an aerial vehicle (AV) tab (510) extending from the exterior surface, a tube (440) containing the UAV (400), the tube (440) including a tab stop (515) configured to controllably hinder travel of the AV tab (510) past the tab stop (515), and a pair of opposing tab guides (700, 705) configured to position the AV tab (510) for travel over the tab stop (515).
Abstract:
According to one aspect of the invention there is provided a system and method for providing propulsion and control to an air vehicle, and for operating the vehicle, in which at least three propulsion units provide vertical thrust for vectored thrust flight, and in which at least one or two of the propulsion units also provide thrust for vectored thrust cruising or aerodynamic flight by suitably tilting the respective propulsion units for changing the thrust vector thereof. At the same time, the three or more propulsion units are operated to generate controlling moments to the air vehicle about three orthogonal axes, pitch, roll and yaw, during vectored thrust flight (hover, cruising, etc.) or during aerodynamic flight for controlling the vehicle. The control moments are generated by selectively varying the thrust generated by each of the propulsion units independently of one another, and: by selectively vectoring the thrust of one propulsion unit with respect to each of two independent tilt axes independently of one another, or by selectively vectoring the thrust of each of two propulsion units with respect to a respective tilt axis, independently of one another.
Abstract:
Conventional bottom blade type trefoil flight vehicles have composite structures wherein a plurality of pairs of fixing plates, forward/backward adjustment blades, and left and right rotation adjustment blades are separately mounted and adjusted, and thus have difficulties in scouting and surveillance in an indoor area due to the heavy weights and the large volumes of said flight vehicles. Another conventional flight vehicle has drawbacks in that flight in the left and right directions is difficult, and an adjustment blade and a fixing plate are arranged adjacent to each other to cause mutual influences of wind and non-uniformity in the flow of wind. The present invention provides a flight vehicle characterized in that three pairs of fixing plates with fixed pitch propellers and adjustment blades are installed at an angle of 120 degrees. The present invention allows for anti-torque, stoppage, forward/backward advancing, left and right rotation, and flight in the left and right direction of flight vehicles, and scouting and surveillance in a narrow space. The flight vehicle of the present invention is simple in structure and control, lightweight, and small in size, thereby improving power efficiency.
Abstract:
A fluid dynamic device (100) for directing fluid flow to generate thrust comprising a thrust control shroud (130) disposed about a central axis (210) of said fluid dynamic device (100) for directing a fluid flow between an upstream fluid intake region (220) and a downstream fluid exit region (222), forming a fluid exit area, of said shroud (130) to generate thrust wherein a displacement of said fluid exit region (222) of said shroud (130) with respect to said central axis (210) results in a translation of said fluid exit area (222) such that the level of shear stress induced in that part of the shroud (130) disposed laterally to the direction of translation of the shroud (130) is minimised.
Abstract:
Изобретение относится к авиационной технике. Способ полета заключается в том, что у двух воздушных винтов противоположного вращения с изменяемыми углами установки лопастей, оси устанавливают вдоль направления полета и при движении увеличивают угол общего шага, отклоняют оси воздушных винтов от направления набегающего потока на угол установки оси воздушного винта по отношению к направлению потока, получают силу, перпендикулярную осям воздушных винтов в направлении отклонения передних концов осей воздушных винтов, увеличивают ее по мере увеличения скорости полета и угла оси воздушного винта по отношению к направлению потока, достигают скорости, при которой величина этой силы близка к весу летательного аппарата, и обеспечивают отклонение передних концов осей воздушных винтов вверх. При достижении скорости полета замедляют вращение, увеличивают углы общего шага по мере увеличения относительной скорости винта. Оси обоих воздушных винтов устанавливают в одном направлении с возможностью циклического изменения углов установки лопастей. Создают наибольшие углы установки в течение оборота лопасти на одном воздушном винте в противоположной части по отношению к сектору, на котором создают наибольшие углы установки на воздушном винте противоположного вращения.