Abstract:
A process, which comprises forming a metal micro-pattern on the surface of an inorganic substrate, surface-treating the surface of the metal micro-pattern and the surface of the plastic substrate to make it chemically reactive, and bringing the metal micro-pattern into contact with the surface of the plastic substrate to transfer the metal micro-pattern from the surface of the inorganic substrate to the surface of the plastic substrate, can be easily and simply carried out using conventional equipments to produce one or more metal pattern fixed on a plastic material.
Abstract:
High throughput screening of crystallization of a target material is accomplished by simultaneously introducing a solution of the target material into a plurality of chambers of a microfabricated fluidic device. The microfabricated fluidic device is then manipulated to vary the solution condition in the chambers, thereby simultaneously providing a large number of crystallization environments. Control over changed solution conditions may result from a variety of techniques, including but not limited to metering volumes of crystallizing agent into the chamber by volume exclusion, by entrapment of volumes of crystallizing agent determined by the dimensions of the microfabricated structure, or by cross-channel injection of sample and crystallizing agent into an array of junctions defined by intersecting orthogonal flow channels.
Abstract:
The microreactor is completely integrated and is formed by a semiconductor body having a surface and housing at least one buried channel accessible from the surface of the semiconductor body through two trenches. A heating element extends above the surface over the channel and a resist region extends above the heating element and defines an inlet reservoir and an outlet reservoir. The reservoirs are connected to the trenches and have, in cross-section, a larger area than the trenches. The outlet reservoir has a larger area than the inlet reservoir. A sensing electrode extends above the surface and inside the outlet reservoir.
Abstract:
A microfabrication process for making enclosed, subsurface microfluidic tunnels, cavities, channels, and the like within suspended beams includes etching a single crystal silicon wafer to produce trenches defining a beam. The trench walls are oxidized, and the interior of the beam is etched through a channel via on the top of the beam to form a hollow beam with oxide sidewalls. The beam is released, and the via is then sealed to form an enclosed released channel beam,
Abstract:
A microfluidic apparatus for producing an emulsion, comprising at least one fluid inlet channel (4) configured to allow an aqueous solution to flow therealong and at least one fluid inlet channel (2) configured to allow an oil phase to flow therealong. Each inlet channel converges at a junction (8) at which an emulsion is formed upon contact between the oil phase and aqueous solution. The apparatus further comprises a fluid outlet channel (22) extending away from the junction, and configured to allow the emulsion to flow therealong. Each inlet channel comprises a restricted section (10, 16) disposed at least adjacent to the junction, and an expanded section (14, 20) disposed upstream of the restricted section, wherein the expanded section has an aspect ratio which is greater than 20:1.
Abstract:
A microfluidic device includes first and second outer layers each having one or more microfluidic formations and an intermediate layer bonded between the first and second outer layers; in which the glass transition temperature of the first outer layer is higher than the glass transition temperature of the second outer layer.
Abstract:
A method of fabricating a micro-device having micro-features on glass is presented. The method includes the steps of preparing a first glass substrate, fabricating a metallic pattern on the first glass substrate, preparing a second glass substrate and providing one or more apertures on the second glass substrate, heating the first glass substrate and the second glass substrate with a controlled temperature raise, bonding the first glass substrate and the second glass substrate by applying pressure to form a bonded substrate, wherein the metallic pattern is embedded within the bonded substrate, cooling the bonded substrate with a controlled temperature drop and thereafter maintaining the bonded substrate at a temperature suitable for etching, etching the metallic pattern within the bonded substrate, wherein an etchant has access to the metallic pattern via the apertures, forming a void within the bonded substrate, wherein the void comprises micro-features.
Abstract:
Embodiments of methods for sealing a glass microstructure assembly comprise providing one or more side retainer members on a base plate adjacent the glass microstructure assembly, the side retainer members having a height less than an uncompressed height defined by the glass microstructure assembly. The methods also comprise compressing the glass microstructure assembly via a load bearing top plate in intimate contact with the top glass layer while heating the glass microstructure assembly and the top plate to a glass sealing temperature, the glass sealing temperature being a temperature sufficient to make glass viscous, wherein the glass microstructure assembly is compressed until the load bearing top plate contacts the side retainer members, and wherein the lower surface of the top plate maintains adhesion to the upper surface of the top glass layer at the glass sealing temperature while the load bearing plate is supported by the side retainer members.
Abstract:
A photostructurable ceramic is processed using photostructuring process steps for embedding devices within a pholostruclurable ceramic volume, the devices may include one or more of chemical, mechanical, electronic, electromagnetic, optical, and acoustic devices, all made in part by creating device material within the ceramic or by disposing a device material through surface ports of the ceramic volume, with the devices being interconnected using internal connections and surface interfaces.
Abstract:
Embodiments of the present invention relate to a UV -curable polyurethane-methacrylate (PUMA) substrate for manufacturing microfluidic devices. PUMA is optically transparent, biocompatible, and has stable surface properties. Embodiments include two production processes that are compatible with the existing methods of rapid prototyping, and characterizations of the resultant PUMA microfluidic devices are presented. Embodiments of the present invention also relate to strategies to improve the production yield of chips manufactured from PUMA resin, especially for microfluidic systems that contain dense and high-aspect-ratio features. Described is a mold-releasing procedure that minimizes motion in the shear plane of the microstructures. Also presented are simple yet scalable methods for forming seals between PUMA substrates, which avoids excessive compressive force that may crush delicate structures. Two methods for forming interconnects with PUMA microfluidic devices are detailed. These improvements produce a microfiltration device containing closely spaced and high-aspect-ratio fins, suitable for retaining and concentrating cells or beads from a highly diluted suspension.