Abstract:
A multi-aperture imaging system comprising a first camera with a first sensor that captures a first image and a second camera with a second sensor that captures a second image, the two cameras having either identical or different FOVs. The first sensor may have a standard color filter array (CFA) covering one sensor section and a non-standard color CFA covering another. The second sensor may have either Clear or standard CFA covered sections. Either image may be chosen to be a primary or an auxiliary image, based on a zoom factor. An output image with a point of view determined by the primary image is obtained by registering the auxiliary image to the primary image.
Abstract:
A spectral colorimetric apparatus includes a housing which includes a side wall. An outer surface of the side wall is an adjustment surface capable of adjusting a position of a linear sensor by moving while attaching the linear sensor to the adjustment surface. The linear sensor is supported by the side wall of the housing while abutting on the adjustment surface and receives alight beam that is dispersed by a concave surface reflection type diffraction element and passes through an opening portion. The adjustment surface is parallel to a tangential line at a part of a Rowland circle of the concave surface reflection type diffraction element, through which a light beam received by the linear sensor passes.
Abstract:
What is disclosed is a system and method for real-time enhancement of an identified time-series signal of interest in a video that has a similar spatial and temporal structure to a given reference signal, as determined by a measure of closeness. A closeness measure is computed for pixels of each image frame of each channel of a multi-channel video to identify a time-series signal of interest. The intensity of pixels associated with that time-series signal is modified based on a product of the closeness measure and the reference signal scaled by an amplification factor. The modified pixel intensity values are provided back into the source video to generate a reconstructed video such that, upon playback of the reconstructed video, viewers thereof can visually examine the amplified time-series signal, see how it is distributed and how it propagates. The methods disclosed find their uses in remote sensing applications such as telemedicine.
Abstract:
Methods, systems and apparatuses for rotational viewing systems for optical and/or other measuring equipment are disclosed. The rotational viewing device includes a housing having an interface end opposite a viewing end. The housing has one or more bends between the interface end and the viewing end, an internal mirror, and one or more rotatable joints or connections allowing at least part of the housing to be rotated in a plane parallel or orthogonal to an optical axis of an apparatus to which the viewing device interfaces at the interface end. The rotational viewing device also includes an eyepiece, located at or near the viewing end.
Abstract:
A color measuring device includes a storage unit configured to store therein colorimetric values corresponding respectively to colors constituting a reference chart in a predetermined color space that is device-independent; an image capturing unit configured to capture the reference chart and a subject for color measurement simultaneously to acquire RGB values of the reference chart and RGB values of the subject; a search unit configured to search for RGB values of four points corresponding to vertices of a polyhedron in the reference chart, the polyhedron including a specified RGB value of the subject in an RGB color space; a calculating unit configured to calculate a linear transformation matrix for converting the RGB values of the four points into the corresponding colorimetric values; and a conversion unit configured to convert the specified RGB value into a corresponding colorimetric value in the predetermined color space based on the linear transformation matrix.
Abstract:
A spectral characteristic measuring device includes an illuminating unit that illuminates a medium; a light dividing unit that divides reflection light from the medium into reflection light beams; a first imaging unit that includes first lenses and second lenses arranged alternately in a staggered pattern and focuses the respective reflection light beams; a diffraction unit that includes a first diffraction region and a second diffraction region and diffracts the focused reflection light beams to form diffraction images; and a light receiving unit that includes plural pixels for receiving the diffraction images. The reflection light beams focused by the first lenses enter the first diffraction region to form first diffraction images, the reflection light beams focused by the second lenses enter the second diffraction region to form second diffraction images, and the first and second diffraction images are arranged alternately on the light receiving unit in a pixel arrangement direction.
Abstract:
The present disclosure provides for a system and method for assessing chronic exposure of a biological sample, such as a bodily fluid, to an analyte of interest. A biological sample may be illuminated to thereby generate a one or more pluralities of interacted photons. These interacted photons may be detected to thereby generate one or more spectroscopic data sets representative of a biological sample. Spectroscopic data sets generated may be compared to at least one reference data set. Each reference data set may be associated with a known exposure to a known analyte. The present disclosure contemplates that the system and method disclosed herein may be used to analyze exposure of biological samples to at least one analyte over time. Data sets may be obtained at various time intervals to assess changes in a molecular composition as a result of chronic exposure to an analyte.
Abstract:
The disclosure provides for a portable device for detecting hazardous agents, including explosives using SWIR hyperspectral imaging. The device may comprise a collection optics, a SWIR multi-conjugate filter, a SWIR camera, and a display. The device may also comprise an RGB camera. The disclosure also provides for a method of using said portable device wherein interacted photons are collected and passed through a SWIR multi-conjugate filter. The interacted photons are detected to generate at least one SWIR hyperspectral image. The SWIR hyperspectral image may be analyzed to determine the presence or absence of a hazardous agent on a target. An RGB image of a target may also be generated and analyzed to survey a sample scene.
Abstract:
An imaging system may include an optical system that forms an image of light irradiated onto a sample in a predetermined focal plane, an imaging element that includes a pixel array in which a plurality of pixels are arranged in a two-dimensional matrix, each of the pixels detecting at least a part of the light of the image of the sample formed in the focal plane, the imaging element obtaining the image of the sample corresponding to the light detected by the pixel array, a spectrum detecting unit arranged to be adjacent to the pixel array, the spectrum detecting unit detecting a spectrum of the light in the focal plane to output spectrum information, and a correcting unit that corrects the image of the sample obtained by the imaging element based on the spectrum information output from the spectrum detecting unit.
Abstract:
A virtual microscope system capable of obtaining a stained sample image and a statistical data of spectra in a short period of time is provided, the virtual microscope system includes an image obtaining unit for obtaining a stained sample image, a spectrum obtaining unit for obtaining a spectrum of the stained sample image, an optical path setting unit for setting an optical path of a light flux passed through the stained sample with respect to the image obtaining unit and the spectrum obtaining unit and a control unit for controlling to repeat obtaining the stained sample image by the image obtaining unit and obtaining the spectrum of the stained sample image by the spectrum obtaining unit in the observation field of the stained sample to create a virtual slide and a spectrum table of the stained sample.