Abstract:
A novel means of provided a hybrid flexure mounted moving mirror component in an interferometer is introduced herein. In particular, a linear bearing in combination with a novel flexure mounting having novel tilt and velocity control of the moving optical component is provided. Such an arrangement enables correction of the errors at the mirror itself while also solving the problem of isolating vibration and noise caused by the imperfections in the bearing surfaces used in many conventional interferometers. Using such a coupled flexure mounting of the present invention, in addition to the above benefits, also enhances velocity control because the resultant low mass of the moving mirror assembly enables the systems disclosed herein to respond faster than conventional mirror velocity controlled interferometer instruments and with a lower velocity error so as to provide a more stable and lower noise spectra from the analytical instrument.
Abstract:
A spectrometer is presented that includes s spectrally dispersive optical element (120) to spectrally disperse a received light, a leveraged-optics adjustable deflector (142-1, 142-2, 142-3) to adjustably deflect the spectrally dispersed light, and a detector array (160) to receive the spectrally dispersed and adjustably deflected light. The received light can inlcude an interference beam combined from a returned image beam and a reference beam in a Spectral Domain Optical Coherence Tomograph. The detector array can include a linear sensor array. The leveraged-optics adjustable deflector can include an optical element with an adjustable transmissive property or an adjustable reflective property, wherein the adjustable deflector is adjustable by a mechanical adjustment being optically leveraged into a smaller optical adjustment.
Abstract:
Methods and systems are provided for using optical interferometry in the context of material modification processes such as surgical laser or welding applications. An imaging optical source that produces imaging light. A feedback controller controls at least one processing parameter of the material modification process based on an interferometry output generated using the imaging light. A method of processing interferograms is provided based on homodyne filtering. A method of generating a record of a material modification process using an interferometry output is provided.
Abstract:
The invention relates to an optical coherence microscopy system for fast, phase resolved imaging by means of optical coherence microscopy with decoupled illumination and detection apertures, producing a dark-field effect with an enhanced optical contrast. The setup uses a light source with an appropriate temporal coherence, an interferometer and an array detector combined with a spectrometer. The dark-field effect is produced by optical filter means in the illumination and detection paths, positioned in conjugated planes of the sample microscope objective. These optical means comprise for example refractive or diffractive elements, amplitude or phase masks, or programmable spatial light modulators. The object is scanned via a scanning unit allowing a point scan of the object.
Abstract:
Raman spectroscopy apparatuses are described that detect the spectral characteristics of a sample wherein the apparatus consists of a multiplicity of modulated discrete light sources adapted to excite a sample with electromagnetic radiation,, a filter adapted to isolate a predetermined wavelength emitted by the sample wherein the wavelength is further modulated at different frequencies, and a detector for detecting the isolated wavelength. The apparatus may further consist of an interferometer, such as a Michelson interferometer, adapted to modulate the excitation energy. Also provided herein are methods, systems, and kits incorporating the Raman spectroscopy apparatus.
Abstract:
An optical measurement Method and System for spectroscopy are disclosed for evaluating the parameters of a sample. The device generally includes a broadband source for generating a light beam. Reflected light beam are simultaneously analyzed as a function of the position within the beam to provide information at multiple wavelengths and/or angular distribution. A Furier filter, comprising dispersion element and a two-dimensional photodetector array are used so that the beam may be simultaneously or consicuently analyzed at multiple angles of returned from the sample (diffracted) light at multiple wavelengths.
Abstract:
Novel spectroscopy techniques using entangled photons are disclosed. In one technique, entangled photons are directed to a sample of interest, while the photons with which they are entangled are resolved according to frequency. The photons transmitted by or reflected from the sample and the frequency-resolved photons are detected. Such detection may be by way of an electronic coincidence counter or a biphoton sensitive material, which absorbs entangled photons while allowing other photon pairs to pass. Detection information is used to derive spectroscopic properties of the sample. In another technique, a Fourier transform spectroscopy technique using entangled photons is disclosed. Entangled photons are directed to a sample, while the photons with which they are entangled are directed to a Michelson interferometer. The photons transmitted by or reflected from the sample and the photons leaving the Michelson interferometer are detected. Such detection may be by way of an electronic coincidence counter or a biphoton sensitive material. Detection information is used to derive spectroscopic properties of the sample.
Abstract:
Designs, implementations, and techniques for optically measuring a sample to obtain spectral absorbance map of the sample. Light at different wavelength bands may be used to detect different absorption features in the sample. Multiple light sources may be used including tunable lasers.
Abstract:
This invention relates to a method and system for measuring characteristics in or beneath a material surface being subject to a periodic movement. The method comprises the projection of an expanded light beam toward the surface, receipt and splitting of the light reflected from the surface into two light paths, applying a periodic fluctuation into at least one of said paths, combining the light beams and directing them toward a detector device for producing an interference pattern on the surface of said detector device.
Abstract:
This invention relates to amethod and system for measuring characteristics in or beneath a material surface being subject to a periodic movement. The method comprises the projection of an expanded light beam toward the surface, receipt and splitting of the light reflected from the surface into two light paths, applying a periodic fluctuation into at least one of said paths, combining the light beams and directing them toward a detector device for producing an interference pattern on the surface of said detector device.