Abstract:
A photostructurable ceramic is processed using photostructuring process steps for embedding devices within a photostructurable ceramic volume, the devices may include one or more of chemical, mechanical, electronic, electromagnetic, optical, and acoustic devices, all made in part by creating device material within the ceramic or by disposing a device material through surface ports of the ceramic volume, with the devices being interconnected using internal connections and surface interfaces.
Abstract:
Methods for fabricating of high aspect ratio probes and deforming micropillars and nanopillars are described. Use of polymers in deforming nanopillars and micropillars is also described.
Abstract:
Methods for fabrication of high aspect ratio micropillars and nanopillars are described. Use of alumina as an etch mask for the fabrication methods is also described. The resulting micropillars and nanopillars are analyzed and a characterization of the etch mask is provided.
Abstract:
The invention provides a system and process of patterning structures on a carbon based surface comprising exposing part of the surface to an ion flux, such that material properties of the exposed surface are modified to provide a hard mask effect on the surface. A further step of etching unexposed parts of the surface forms the structures on the surface. The inventors have discovered that by controlling the ion exposure, alteration of the surface structure at the top surface provides a mask pattern, without substantially removing any material from the exposed surface. The mask allows for subsequent ion etching of unexposed areas of the surface leaving the exposed areas raised relative to the unexposed areas thus manufacturing patterns onto the surface. For example, a Ga+ focussed ion beam exposes a pattern onto a diamond surface which produces such a pattern after its exposure to a plasma etch. The invention is particularly suitable for patterning of clear well-defined structures down to nano-scale dimensions.
Abstract:
A fluidic channel system is provided. The fluidic channel system includes a light projection apparatus, a fluidic channel, and a rail. The light projection apparatus provides light. A photocurable fluid, which is selectively cured by the light, flows inside the fluidic channel. A fine structure which is to be formed by curing the photocurable fluid moves along the rail.
Abstract:
A fluidic channel system is provided. The fluidic channel system includes a light projection apparatus, a fluidic channel, and a rail. The light projection apparatus provides light. A photocurable fluid, which is selectively cured by the light, flows inside the fluidic channel. A fine structure which is to be formed by curing the photocurable fluid moves along the rail.
Abstract:
An optofluidic maskless lithography system is provided. The optofluidic lithography system includes a light source; a spatial light modulator for modulating light provided by the light source; and a microfluidic channel including photocurable liquid flowing therein, wherein the microfluidic channel selectively cures the photocurable liquid according to the modulated light provided by the spatial light modulator.
Abstract:
An optofluidic maskless lithography system is provided. The optofluidic lithography system includes a light source; a spatial light modulator for modulating light provided by the light source; and a microfluidic channel including photocurable liquid flowing therein, wherein the microfluidic channel selectively cures the photocurable liquid according to the modulated light provided by the spatial light modulator.
Abstract:
The present invention relates to polymer patterns of various shapes formed using modifications of means and methods used in the prior lithography process, and the metal film patterns, metal patterns and plastic molds using the polymer patterns, as well as methods of forming these patterns and molds. The method of forming the polymer patterns comprises the steps of: (a) depositing a photosensitive polymer on the substrate to form a polymer film; (b) placing a photomask on the polymer film; and (c) irradiating the polymer film with a light moving in random direction through the photomask, so as to form at least one pattern which is concave from the surface of the polymer film in a direction perpendicular to the substrate and extends in a direction parallel to the substrate. The inventive polymer patterns have at least one pattern which is concave from the surface of the polymer film in a direction perpendicular to the substrate and extends in a direction parallel to the substrate. The vertical cross-section of the concave patterns has at least one curved surface.
Abstract:
L'invention concerne un procédé de photolithographie permettant la réalisation de motifs dans une couche de résine photosensible (601) posée sur un substrat (600). Les motifs (607) comprennent des flancs (608) inclinés par rapport à une normale (n) à un plan principal du substrat et qui présentent un angle d'inclinaison (θ) bien supérieur à celui des motifs obtenus selon l'art antérieur. L'invention concerne également un dispositif permettant de mettre en oeuvre ledit procédé.