Abstract:
The invention relates to a spectrometer for analyzing the optical emission of a sample by means of pulsed excitation of an optical spectral emission, having an excitation source, a gap arrangement, at least one dispersive element and having detectors for the emitted spectrum, in which two beam paths are provided with two dispersive elements, the first dispersive element of which images the spectrum of the emission onto a number of spatially resolving detectors and the second dispersive element of which images the spectrum of the emission onto a number of time-resolving detectors.
Abstract:
An apparatus (10) measures a spectral distribution of a translucent printed product (12) produced with a printing device. The apparatus (10) has an illuminating source (20) for illuminating the printed product (12), an optoelectronic measuring means (32) for measurer the transmittance value of a section of the spectrum of the light (26) transmitted through the printed product (12), an optical disperser (28) for dispersing the wavelengths of the transmitted light (26), and a light entry gap plane that is definitive for the disperser (28). The light entry gap plane that is definitive for the disperser (28) is created by the surface of the printed product (12) to be examined.
Abstract:
The present invention provides a highly reliable spectral module. When light L1 proceeding to a spectroscopic unit (4) passes through a light transmitting hole (50) in the spectral module (1) in accordance with the present invention, only the light having passed through a light entrance side unit (51) formed such as to become narrower toward a substrate (2) and entered a light exit side unit (52) formed such as to oppose a bottom face (51b) of the light entrance side unit (51) is emitted from a light exit opening (52a). Therefore, stray light M incident on a side face (51c) or bottom face (51b) of the light entrance side unit (51) is reflected to the side opposite to the light exit side unit (52) and thus is inhibited from entering the light exit side unit (52). Therefore, the reliability of the spectral module (1) can be improved.
Abstract:
An adjustable aperture device for an electromagnetic radiation detecting apparatus includes a position adjustment body configured for adjusting a position of a selected aperture hole of multiple selectable aperture holes, where electromagnetic radiation propagates through the selected aperture hole. The adjustable aperture device further includes a guide unit configured for guiding the position adjustment body along a predefined guide direction, and an aperture body defining the aperture holes and including multiple engagement sections, where the adjustment body is engagable in a selectable one of the engagement sections to thereby select the selected aperture hole. The adjustable aperture device further includes a pre-loading element configured for pre-loading the position adjustment body towards the aperture body, and a drive unit configured for driving the aperture body to move so that the position adjustment body is engaged in a respective one of the plurality of engagement sections.
Abstract:
An imaging assembly for a spectrometer includes a substrate with first and second modules thereon containing respective arrays of detector elements positioned so the arrays are elongated along a first axis with a gap therebetween. A third module including a third array of detector elements is also thereon, spaced from the first axis, at least as long as the gap, and smaller than the elongation of either of the first or second arrays. Further thereon are first and second slits elongated along a second axis spaced from and generally parallel to the first axis, each being at least as long as the respective arrays. A third slit at least as long as the gap is also therein, spaced from the first axis, second axis, and third array such that the gap, third slit, and third array are generally along a third axis generally perpendicular to the first and second axis.
Abstract:
In the spectroscopy module 1, a light detecting element 4 is provided with a light passing opening 4b through which light made incident into a body portion 2 passes. Therefore, it is possible to prevent deviation of the relative positional relationship between the light passing opening 4b and a light detection portion 4a of the light detecting element 4. Further, an optical element 7, which guides light made incident into the body portion 2, is arranged at the light passing opening 4b. Therefore, light, which is to be made incident into the body portion 2, is not partially blocked at a light incident edge portion of the light passing opening 4b, but light, which is to be made incident into the body portion 2, can be guided securely. Therefore, according to the spectroscopy module 1, it is possible to improve the reliability.
Abstract:
A multi field of view hyperspectral imaging device and method for using the same are described herein. In one embodiment, the multi field of view hyperspectral imaging device comprises multiple fore optics, multiple fold mirrors, a slit including a multiple openings, a spectrometer, and a 2-dimensional detector.
Abstract:
A system and method of photon trapping spectroscopy to vary the path length of light for use in spectroscopy. The systems and method include a rotating reflector with slits for selectively permitting light to enter and exit into a reflection cavity containing a sample to be analyzed. After entering the cavity, but before exiting, the light is trapped and repeatedly reflects back and forth through a sample, effectively increasing the path length of light through a sample. The effective path length is quickly adjustable by altering the rotation speed of the rotating reflector to alter the time in which the light is trapped within the cavity. The systems and methods provide a spectroscope with a wide dynamic range, low detection limits, and usable with broadband and monochromatic light sources throughout the optical region (ultraviolet to infrared).
Abstract:
Methods in a spectral measurement apparatus are disclosed. Light is received with a plurality of sensors. Each sensor generates an output signal having a frequency proportional to an intensity of light received by the sensor. First, second and third signals are generated each having a frequency proportional to an intensity of light received by a sensor of a wavelength or spectral band. A spectral characteristic of the received light is determined based on at least the first, second and third signals, which are are coupled to a processing element and input in parallel. The spectral characteristic is determined based on measuring a frequency or period of the at least first, second and third signals. Spectral data based on the determined spectral characteristic is generated by the processing element and displayed on a display device for perception by a viewer or transmitted to a data interface for transmission to an electronic device external to the spectral measurement apparatus.
Abstract:
Light dispersing device comprising a slit element having a slit for exposure to electromagnetic radiation, wherein the slit element is configured and disposed for turning the slit between at least two positions. The light dispersing device is used together with a streak camera, whereby in a first position the slit is adjusted to influence the temporal resolution of the streak camera and in a second postion the slit is adjusted to influence the spectral resolution of the streak camera.