Abstract:
PURPOSE: An infrared sensor is provided to detect an additional projector mounted between boundary areas formed by a transmitting unit and a receiving unit by checking emission of infrared rays from a closer position than the transmitting unit. CONSTITUTION: A light receiver(400) of an infrared sensor consists of a light receiving device(410), an amplifier(420), a light-shielding decision unit(430), a shielding time comparator(440), an alarming device(450), an auxiliary projector(460) and an auxiliary receiver(470). The light receiving device receives light emitted from a projector, and the amplifier amplifies the received light into specific level. The light-shielding decision unit calculates the amount of received light and decides that a gap between the projector and the receiver is isolated if the value is lower than specific value. The shielding time comparator counts the shielding time and compares the time with preset reference time. The comparator outputs an alarm generating signal to the alarming device if the shielding time is longer than the reference time. The auxiliary projector and the auxiliary receiver are used for near sensing. The alarming device generates alarms according to an alarm generating signal from the comparator or the auxiliary receiver. Therefore, wrong operation of the infrared sensor is prevented.
Abstract in simplified Chinese:本发明之红外线放射组件1包含:基板2;薄膜部3,设于该基板2之一表面201侧;贯通孔2a,在该基板2的厚度方向上贯通该基板2;格子状的第1红外线放射层4a,系设在与该薄膜部3之该基板2侧相反的一侧。另外,红外线放射组件1更包含:复数的垫片9,与该第1红外线放射层4a电性连接;及第2红外线放射层4b,以与第1红外线放射层4a离开的方式,配置在该第1红外线放射层4a的开口部4aa中,且其红外线放射率高于该薄膜部3。
Abstract in simplified Chinese:本发明之红外线放射组件包含:基板,具有正交于厚度方向的一表面;开口部,在该厚度方向上贯穿该基板;第1绝缘层,在该基板的该一表面配置成覆盖该开口部;发热体层,配置于该第1绝缘层上,俾在平行于该一表面的基准面中位于该开口部的内侧;第2绝缘层,在该第1绝缘层上配置成覆盖该发热体层;及通电部,配置于该第2绝缘层上,并电性连接至该发热体层。该开口部系如下形状;在平行于该一表面的基准面内具有角。该通电部具有在该厚度方向与该开口部之该角重叠的补强部。
Abstract in simplified Chinese:红外线放射组件包含:第1绝缘层,具有热绝缘性及电绝缘性;发热体层,形成于该第1绝缘层上,借由通电而放射红外线;及第2绝缘层,形成在相对于该发热体层而与该第1绝缘层为相反侧,并具有热绝缘性及电绝缘性。该第2绝缘层系构成为使得从该发热体层放射的红外线穿透。该发热体层具有经选择的薄膜电阻,使得该发热体层之阻抗与该第2绝缘层之接触的空间之阻抗相匹配。
Abstract in simplified Chinese:一种基于红外线激光二极管之高强度光(100),其做为配合于夜视影像系统的飞机着陆灯或搜索灯。该高强度光(100)使用安装到一散热器(112)中的红外线激光二极管(110)来提供温度稳定性。由该激光二极管(110)所发出的红外光借由光学传输设备(108)发送到一光学定位板(106)。该光学定位板(106)结合该个别的激光二极管(110)的发射到一单一红外光束,其系由一球面镜(102)所对准。
Abstract:
Es wird eine Infrarot-Lichtquelle angegeben, umfassend ein Substrat, das wenigstens eine einkristalline Siliziumschicht aufweist und das in einem Teilbereich eine Membran aufweist, wobei die Dicke der Membran weniger als 200 μm beträgt und wobei die Membran einen Teil der einkristallinen Siliziumschicht umfasst, wobei das Substrat wenigstens eine Diffusionssperrschicht zur Verminderung der Oxidation der einkristallinen Siliziumschicht aufweist, wobei die Diffusionssperrschicht wenigstens die Membran bedeckt, wobei die Infrarot-Lichtquelle weiterhin eine auf der Membran angeordnete Deck-Schicht umfasst, die eine Emissivität von wenigstens 0,85 aufweist.
Abstract:
The invention provides an infrared upconversion spectrometer for determining a mid-IR spectrum of received infrared light with a high resolution. The spectrometer applies upconversion to transform light in the mid-IR to the near-IR range where efficient detectors are available. The upconversion causes divergence of the light, and in addition, the invention applies an extra dispersive element to record a spectrum.
Abstract:
Methods and systems for measuring one or more properties of a sample are disclosed. The methods and systems can include multiplexing measurements of signals associated with a plurality of wavelengths without adding any signal independent noise and without increasing the total measurement time. One or more levels of encoding, where, in some examples, a level of encoding can be nested within one or more other levels of encoding. Multiplexing can include wavelength, position, and detector state multiplexing. In some examples, SNR can be enhanced by grouping together one or more signals based on one or more properties including, but not limited to, signal intensity, drift properties, optical power detected, wavelength, location within one or more components, material properties of the light sources, and electrical power. In some examples, the system can be configured for optimizing the conditions of each group individually based on the properties of a given group.
Abstract:
Systems (290) of the present disclosure are directed to detecting species within a fluid, e.g. for multi-gas analysis, using a multi-pass absorption cell (220) and a spectrometer (270). The absorption cell includes a plurality of mirrors (e.g. 230, 240, 250) arranged in a manner such that a detection light traverses multiple passes through the fluid within the absorption cell. In some implementations, the detection light is reflected by the plurality of mirrors to form optical paths in more than one plane. The system also includes an electronic unit, e.g. data processing unit 280, configured to receive and process spectral data from the spectrometer. In some implementations, the electronic unit communicates with at least one computational unit over a communication interface to send a portion of the spectral data for processing. The electronic unit may also receive processed data from the computational unit.