Abstract:
Amorphous silicon carbide thin film structures, including: protective coatings for windows in infrared process stream monitoring systems and sensor domes, heated windows, electromagnetic interference shielding members and integrated micromachined sensors; high-temperature sensors and circuits; and diffusion barrier layers in VLSI circuits. The amorphous silicon carbide thin film structures are readily formed, e.g., by sputtering at low temperatures.
Abstract:
Patterned ion-bombarded graphite electron emitters are disclosed as well as processes for producing them. The electron emitters are produced by forming a layer of composite of graphite particles and glass on a substrate then bombarding the composite with an ion beam. The electron emitters are useful in field emitter cathode assemblies which are fabricated into flat panel displays.
Abstract:
The present invention provides an electron emission device assured to emit electrons without requiring film thickness control in the order of submicrons and production method of the electron emission device as well as a display apparatus using the electron emission device. The electron emission device includes a cathode electrode consisting of conductive fine particles adhered directly onto a substrate and electrons are emitted from these conductive fine particles when a predetermined electric field is applied.
Abstract:
The present invention provides an electron emission device assured to emit electrons without requiring film thickness control on the order of submicrons and a production method of the electron emission device as well as a display apparatus using the electron emission device. The electron emission device includes a cathode electrode consisting of conductive fine particles adhered directly onto a substrate and electrons are emitted from these conductive fine particles when a predetermined electric field is applied.
Abstract:
A method for fabricating sharp asperities. A substrate is provided which has a mask layer disposed thereon, and a layer of micro-spheres is disposed superjacent the mask layer. The micro-spheres are for patterning the mask layer. Portions of the mask layer are selectively removed, thereby forming circular masks. The substrate is isotropically etched, thereby creating sharp asperities.
Abstract:
An electron emission element of the present invention includes a substrate, a cathode formed on the substrate, an anode opposed to the cathode, an electron emission member disposed on the cathode, and a control electrode disposed between the cathode and the anode. During operation, the electric field intensity immediately above the electron emission member is lower than that between the control electrode and the anode. Alternatively, the spatial average of an electric field intensity between the electron emission member and the control electrode is smaller than that between the control electrode and the anode.
Abstract:
In order to cause a multi-electron source having electron emitters wired in the form of a matrix to emit electrons without any variations, there is provided an electron generating device including a multi-electron source (601) having a plurality of electron emitters (1002) wired in the form of a matrix through a plurality of data wiring layers (1004) and a plurality of scanning wiring layers (1003), and a driving circuit for driving the multi-electron source (601), the driving circuit including a first driving means (603) for applying a first voltage (Vs) to a scanning wiring layer to which an electron emitter which is to emit electrons is connected, and applying a second voltage (Vns) to a scanning wiring layer to which an electron emitter which is not to emit electrons is connected, and a second driving means (602) for applying a third voltage (Ve) to a data wiring layer to which an electron emitter which is to emit electrons is connected, and applying a fourth voltage (Vg) to a data wiring layer to which an electron emitter which is not to emit electrons is connected, wherein the second voltage (Vns) is substantially equal to the third voltage (Ve).
Abstract:
A flat panel display and a method for forming a flat panel display. In one embodiment, the flat panel display includes a cathodic structure which is formed within an active area on a backplate. The cathodic structure includes a row metal composed of strips of aluminum overlain by a layer of cladding material. The use of aluminum and cladding material to form row metal gives row metal segments which are highly conductive due to the high conductivity of aluminum. By using a suitable cladding material and processing steps, a bond between the aluminum and the cladding material is formed which has good electrical conductivity. In one embodiment, tantalum is used as a cladding material. Tantalum forms a bond with the overlying resistive layer which has good electrical conductivity. Thus, the resulting structure has very high electrical conductivity through the aluminum layer and high conductivity into the resistive layer.
Abstract:
A field emission device is disclosed having a buffer layer positioned between an underlying cathode conductive layer and an overlying resistor layer. The buffer layer consists of substantially undoped amorphous silicon. Any pinhole defects or discontinuities that extend through the resistor layer terminate at the buffer layer, thereby preventing the problems otherwise caused by pinhole defects. In particular, the buffer layer prevents breakdown of the resistor layer, thereby reducing the possibility of short circuiting. The buffer layer further reduces the risk of delamination of various layers or other irregularities arising from subsequent processing steps. Also disclosed are methods of making and using the field emission device having the buffer layer.
Abstract:
A cold electron emission device including an emitter having a protrusion having a sharp tip and disposed at a first end of a semiconductor thin film formed on an insulation substrate; a cathode electrode disposed at a second end of the semiconductor thin film; at least one gate electrode disposed between the emitter and the cathode electrode for controlling a current flowing through the semiconductor thin film; an insulating layer arranged to cover the semiconductor thin film, cathode electrode and gate electrode, except for the emitter; and a lead electrode arranged on the insulating layer such that it surrounds the tip of the emitter, thereby making it possible to achieve a cold electron emission device with reliable current stability.