Abstract:
A printed circuit board (PCB) includes two layers, two signal transmission traces, and a vertical interconnect access (via). The signal transmission traces are respectively arranged on the layers. The signal transmission traces are electrically connected to each other through the via. A centerline of the via with a vertical line of the layers form an acute angle θ, the angle θ is less than cos−1[(Lv2−Lt2)/(Lv2+Lt2)]. Wherein Lt is loss of the two signal transmitting traces in a unit length, and Lv is loss of the via in a unit length.
Abstract:
A support module (1), comprising a conducting layer (2) having a trough hole (5) and a receiving surface adapted to receive a solid state light source (3) with the electrical contact pad (4) being aligned with the through hole (5). The support module (1) further comprises an electrical insulation element (8) and at least one contact pin (9), extending through the electrical insulation element (8), and protruding through the through hole (5). Furthermore, the electrical insulation element (8) comprises a channel (10) allowing access to the end of the contact pin (9) and the electrical contact pad (4) of the solid state light source (3) received by the surface of the conducting layer (2). Such a channel makes it possible to reach the end of the contact pin and the contact pad through the insulation element with a soldering tool. Thus, it is possible to attach the solid state light source on a metal surface by soldering the contact pin to the contact pad. Mounting a solid state lighting device on a metal surface is advantageous in applications requiring good heat dissipation, since the heat dissipation properties of a metal surface is better than of a printed circuit board.
Abstract:
A printed circuit board includes a first signal layer, a first reference layer, a second signal layer, and a third signal layer in that order and includes a first slanted via and a second slanted via. The first signal layer includes an parallel first transmission wire and a second transmission wire. The first and second transmission wires are coupled with each other and cooperatively constitute a first differential pair with an edge-coupled structure. The second signal layer includes a third transmission wire. The third signal layer includes a fourth transmission wire parallel to and coupled with the third transmission wire. The third and fourth transmission wires cooperatively constitute a second differential pair with a broadside-coupled structure. The first slanted via obliquely are interconnected between the first transmission wire and the third transmission wire. The second slanted via obliquely are interconnected between the second transmission wire and the fourth transmission wire.
Abstract:
Provided is a device packaging structure including: an interposer substrate including a substrate, and a plurality of through-hole interconnections formed inside a plurality of through-holes passing through the substrate from a first main surface toward a second main surface, the first main surface being one main surface of the substrate, the second main surface being the other main surface thereof; a first device which includes a plurality of electrodes and is arranged so that these electrodes face the first main surface; and a second device which includes a plurality of electrodes of which an arrangement is different from an arrangement of each of the electrodes of the first device, and is arranged so that these electrodes face the second main surface.
Abstract:
A printed circuit board (PCB) includes two layers, two signal transmission traces, and a vertical interconnect access (via). The signal transmission traces are respectively arranged on the layers. The signal transmission traces are electrically connected to each other through the via. A centerline of the via with a vertical line of the layers form an acute angle θ, the angle θ is less than cos−1[(Lv2−Lt2)/(Lv2+Lt2)]. Wherein Lt is loss of the two signal transmitting traces in a unit length, and Lv is loss of the via in a unit length.
Abstract:
Provided is a device mounting structure that includes: a interposer substrate including a substrate and a plurality of through-hole interconnection; a first device including a plurality of electrodes arranged so as to face the first principal surface of the substrate; and a second device including a plurality of electrodes whose arrangement is different from that of the first device, with the electrodes arranged so as to face the second principal surface of the substrate. Each through-hole interconnection includes a first conductive portion provided at a position on the first principal surface corresponding to the electrode of the first device, and a second conductive portion provided at a position on the second principal surface corresponding to the electrode of the second device. Each electrode of the first device is electrically connected with the first conductive portion. Each electrode of the second device is electrically connected with the second conductive portion.
Abstract:
A printed wiring board has an insulating resin substrate having a first surface and a second surface, the insulating resin substrate having one or more penetrating-holes passing through the insulating resin substrate from the first surface to the second surface, a first conductor formed on the first surface of the insulating resin substrate, a second conductor formed on the second surface of the insulating resin substrate, and a through-hole conductor structure formed in the penetrating-hole of the insulating resin substrate and electrically connecting the first conductor and the second conductor. The penetrating-hole has a first portion having an opening on the first surface and a second portion having an opening on the second surface. The first portion and the second portion are connected such that the first portion and the second portion are set off from each other.
Abstract:
A through-hole electrode substrate includes a substrate including a plurality of through-holes, a plurality of through-hole electrodes arranged within each of the plurality of through-holes, and a first insulation layer arranged on one surface of the substrate, wherein the first insulation layer includes a plurality of first openings which expose each of the plurality of through-holes, the plurality of through-holes includes a leaning through-hole leaning from one surface to the other surface of the substrate, and each of the plurality of first openings is arranged to match an open position of the leaning through-hole.
Abstract:
Disclosed is a PCB including an embedded capacitor and a method of fabricating the same. The long embedded capacitor is formed through an insulating layer, making a high capacitance and various capacitance designs possible.
Abstract:
A printed wiring board has an insulating resin substrate having a first surface and a second surface, the insulating resin substrate having one or more penetrating-holes passing through the insulating resin substrate from the first surface to the second surface, a first conductor formed on the first surface of the insulating resin substrate, a second conductor formed on the second surface of the insulating resin substrate, and a through-hole conductor structure formed in the penetrating-hole of the insulating resin substrate and electrically connecting the first conductor and the second conductor. The penetrating-hole has a first portion having an opening on the first surface and a second portion having an opening on the second surface. The first portion and the second portion are connected such that the first portion and the second portion are set off from each other.