Abstract:
Materials such as titanium are vapor-deposited in the presence of, e.g., oxygen to form a film on a substrate, such as to provide an adhesion layer between a silicon movable structure in an optical MEMS device and a gold layer serving as a reflecting surface. The resulting film contains titanium and oxygen. Varying the conditions under which the film is deposited varies the intrinsic stress of the film, which varies the change in substrate shape caused by the presence of the film. A film having a desired intrinsic stress may be obtained by control of the oxygen partial pressure when the film is deposited. In one embodiment, the oxygen partial pressure in the atmosphere present during titanium deposition is greater than about 2×10−7 Torr, and preferably between about 1×10−6 Torr and about 2×10−6 Torr.
Abstract:
Materials such as titanium are vapor-deposited to form a film on a substrate while the substrate is thermally coupled to a temperature-controlling thermal source. Varying the temperature conditions of the substrate when the film is deposited varies the intrinsic stress of the film, which varies the change in substrate shape caused by the presence of the film. A film having a desired intrinsic stress may be obtained by control of the substrate temperature when the film is deposited. A stress-controlled titanium film may be used, for example, as an adhesion layer between a silicon movable structure in an optical MEMS device and a gold layer serving as a reflecting surface.
Abstract:
Materials such as titanium are vapor-deposited in the presence of, e.g., oxygen to form a film on a substrate, such as to provide an adhesion layer between a silicon movable structure in an optical MEMS device and a gold layer serving as a reflecting surface. The resulting film contains titanium and oxygen. Varying the conditions under which the film is deposited varies the intrinsic stress of the film, which varies the change in substrate shape caused by the presence of the film. A film having a desired intrinsic stress may be obtained by control of the oxygen partial pressure when the film is deposited. In one embodiment, the oxygen partial pressure in the atmosphere present during titanium deposition is greater than about 2null10null7 Torr, and preferably between about 1null10null6 Torr and about 2null10null6 Torr.
Abstract:
A method of fabricating a vertical actuation comb drive first etches a cavity in a semiconductive wafer; then the comb structure is etched, and the fixed part of the structure is deformed by an induced strain, by techniques such as boron doping, by adding a metal layer or a fixed oxide, or a mechanical latch or an additional plate electrode. In a manner known in the art, application of a voltage across the fingers of the comb produces a deflection either tilting or a vertical movement in the moveable portion of the comb drive.
Abstract:
On a substrate of semiconductor material, a sacrificial region is formed and an epitaxial layer is grown; a stress release trench is formed, surrounding an area of the epitaxial layer, where an integrated electromechanical microstructure is to be formed; the wafer is then heat treated, to release residual stress. Subsequently, the stress release trench is filled with a sealing region of dielectric material, and integrated components are formed. Finally, inside the area surrounded by the sealing region, a microstructure definition trench is formed, and the sacrificial region is removed, thus obtaining an integrated microstructure with zero residual stress.
Abstract:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) includes forming a beam structure and an electrode on an insulator layer, remote from the beam structure. The method further includes forming at least one sacrificial layer over the beam structure, and remote from the electrode. The method further includes forming a lid structure over the at least one sacrificial layer and the electrode. The method further includes providing simultaneously a vent hole through the lid structure to expose the sacrificial layer and to form a partial via over the electrode. The method further includes venting the sacrificial layer to form a cavity. The method further includes sealing the vent hole with material. The method further includes forming a final via in the lid structure to the electrode, through the partial via.
Abstract:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) includes patterning a wiring layer to form at least one fixed plate and forming a sacrificial material on the wiring layer. The method further includes forming an insulator layer of one or more films over the at least one fixed plate and exposed portions of an underlying substrate to prevent formation of a reaction product between the wiring layer and a sacrificial material. The method further includes forming at least one MEMS beam that is moveable over the at least one fixed plate. The method further includes venting or stripping of the sacrificial material to form at least a first cavity.
Abstract:
A method of forming a Micro-Electro-Mechanical System (MEMS) includes forming a lower electrode on a first insulator layer within a cavity of the MEMS. The method further includes forming an upper electrode over another insulator material on top of the lower electrode which is at least partially in contact with the lower electrode. The forming of the lower electrode and the upper electrode includes adjusting a metal volume of the lower electrode and the upper electrode to modify beam bending.