Abstract:
A disinfection apparatus and method is provided for disinfecting a fluid. The apparatus elements define three internal container volumes. Fluid is introduced into an entry volume where its flow is conditioned to reduce splash and slow the fluid flow. The fluid is then channeled into a disinfection volume where a disinfection unit delivers a disinfection agent to the fluid. Finally, the fluid exits the apparatus through an exit volume. In one aspect, a sink-trap is disclosed in which wastewater liquid contacts a pair of diverters. The diverters have conditioned contact surfaces that slows and spreads the liquid flow and reduces liquid splash. The wastewater then passes through a UV chamber in which it is disinfected. The liquid then exits the sink-trap. Advanced self-cleaning apparatus are additionally disclosed to clean and disinfect the sink-trap and trapped wastewater. The entire apparatus operates under computer control.
Abstract:
An embodiment provides a method for cleaning a surface, including: encapsulating a cleaning composition in a polymer material to form a compound, wherein the polymer material surrounds the cleaning composition; placing the compound in a location adjacent to the surface, wherein the location adjacent to the surface is a volume separated from an outer volume; dissolving the polymer material at a pH above a target value above the polymer material pH dissolution point, wherein the dissolving releases the cleaning composition; and cleaning the surface using the released cleaning composition. Other aspects are described and claimed.
Abstract:
A ballast water treatment system includes at least one UV-light reactor with at least one UV-lamp, an inlet line for ballast water to be treated connected to the reactor and an outlet line connected to the reactor. The system includes a cleaning system for periodic cleaning of the reactor, including a water inlet line connected to the reactor for supplying water, a container with concentrated CIP-liquid connected to the reactor, a CIP-liquid inlet line connecting the container to the reactor, a dosage pump arranged in the CIP-liquid inlet line for supplying a predetermined amount of concentrated CIP-liquid to the reactor to mix with the water, a circuit comprising the reactor and a pump arranged in the circuit for circulation of water mixed with the concentrated CIP-liquid.
Abstract:
Disclosed herein is an apparatus having a double wiper structure for sterilizing ballast water. Each wiper for use in removing foreign substances from an ultraviolet lamp has a double structure including a main wiper part and auxiliary wiper parts. The auxiliary wiper parts are disposed on opposite sides of the main wiper part so that when the wiper body is moved forward or backward, the corresponding auxiliary wiper part primarily removes foreign substances before the main wiper part wipes the ultraviolet lamp unit. Each auxiliary wiper part includes an inclined protrusion and a pointed part so that friction between the surface of the ultraviolet lamp and the auxiliary wiper part can be minimized. The main wiper part includes a first blade and a second blade that are respectively disposed on opposite sides of a depression formed in an inner circumferential surface of the main wiper part.
Abstract:
There is disclosed a cleaning apparatus for a radiation source assembly in a fluid treatment system. The cleaning system comprises: a cleaning carriage comprising at least one cleaning element for contact with at least a portion of the exterior of the radiation source assembly; a rodless cylinder comprising an elongate housing having a longitudinal axis; a slidable element disposed on an exterior surface of the elongate housing, the slidable element being: (i) coupled to the cleaning carriage, and (ii) magnetically coupled to a driving element disposed within the elongate housing, the driving element comprising a friction modifying element in contact with an interior surface of the elongate housing to define a first frictional resistance in a rotational direction about the longitudinal axis and a second frictional resistance in an axial direction along the longitudinal axis, the friction modifying element configured such that the first frictional resistance is greater than the second friction resistance; and an elongate motive element coupled to the driving element.
Abstract:
Disclosed herein is an apparatus having a double wiper structure for sterilizing ballast water. Each wiper for use in removing foreign substances from an ultraviolet lamp has a double structure including a main wiper part and auxiliary wiper parts. The auxiliary wiper parts are disposed on opposite sides of the main wiper part so that when the wiper body is moved forward or backward, the corresponding auxiliary wiper part primarily removes foreign substances before the main wiper part wipes the ultraviolet lamp unit. Each auxiliary wiper part includes an inclined protrusion and a pointed part so that friction between the surface of the ultraviolet lamp and the auxiliary wiper part can be minimized. The main wiper part includes a first blade and a second blade that are respectively disposed on opposite sides of a depression formed in an inner circumferential surface of the main wiper part.
Abstract:
In one aspect, the invention relates to a filtration apparatus comprising a tubular inorganic porous membrane and a light source disposed within the lumen of the membrane for use in, for example, enhancing oxidation of organic molecules and enhancing foulant removal. In one aspect, the invention relates to a filtration apparatus comprising a tubular porous membrane and a displacement body disposed within the lumen of the membrane. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
Abstract:
A fluid treatment system having an inlet, an outlet, and a fluid treatment zone therebetween. The zone has an array of rows of radiation source assemblies. Each radiation source assembly has a longitudinal axis disposed at an oblique angle with respect to a direction of fluid flow. Each row has a plurality of radiation source assemblies in spaced relation in a direction transverse to the direction of fluid flow, to define a gap through which fluid may flow between an adjacent pair of assemblies. Preferably, all rows in the array are staggered with respect to one another in a direction orthogonal to the direction of fluid flow, such that the gap between an adjacent pair of radiation source assemblies in an upstream row of assemblies is partially or completely obstructed in the direction of fluid flow by a serially disposed radiation source assembly in at least one downstream row.