Abstract:
The present application discloses a detecting apparatus including: a light source for emitting excitation light; a storage portion in which a specimen is stored; a metal film which receives the excitation light to cause evanescent light for illuminating the specimen; a modulator for adjusting an incident angle of the excitation light on the metal film; a driver for generating a driving signal for driving the modulator; a detector for outputting a fluorescence signal in correspondence to intensity of fluorescence generated from the specimen under irradiation of the evanescent light; and an extractor which extracts a signal component from the fluorescence signal, the signal component deriving from the specimen. The incident angle changes in response to a change of the driving signal. The extractor extracts a synchronous signal component as the signal component, the synchronous signal component changing in synchronization with the change of the driving signal.
Abstract:
A glucose sensor comprising an optical energy source having an emitter with an emission pattern; a first polarizer intersecting the emission pattern; a second polarizer spaced a distance from the first polarizer and intersecting the emission pattern, the second polarizer rotated relative to the first polarizer by a first rotational amount Θ; a first optical detector intersecting the emission pattern; a second optical detector positioned proximal to the second polarizer, the first polarizer and the second polarizer being positioned between the optical energy source and the second optical detector, the second optical detector intersecting the emission pattern; a compensating circuit coupled to the second optical detector; and a subtractor circuit coupled to the compensating circuit and the first optical detector.
Abstract:
An apparatus and method for simultaneously measuring, in an immersion microchannel environment, the characteristics of molecular junctions such as a low-molecular-weight biomaterial and the like and the refractive index of a buffer solution by using ellipsometry. Specifically, disclosed is an apparatus for simultaneously measuring, with high sensitivity, the change in refractive index of a buffer solution and the junction dynamic characteristics of a biomaterial by allowing polarized incident light to be received at a biomaterial adsorption layer, which is formed on a substrate such as a semiconductor and the like, so as to meet an anti-reflection condition of a P-wave by using a prism structure and a microchannel; and a measurement method using the same.
Abstract:
A method is disclosed evaluating a silicon layer crystallized by irradiation with pulses form an excimer-laser. The crystallization produces periodic features on the crystalized layer dependent on the number of and energy density ED in the pulses to which the layer has been exposed. An area of the layer is illuminated with light. A microscope image of the illuminated area is made from light diffracted from the illuminated are by the periodic features. The microscope image includes corresponding periodic features. The ED is determined from a measure of the contrast of the periodic features in the microscope image.
Abstract:
A measuring apparatus (200) is provided for inspecting a seal (50) of an item (20). The measuring apparatus (200) includes a radiation source (510, 520) for providing radiation for illuminating the seal (50) of the item (20), a detector (530, 540) for receiving radiation from the item (20) for generating a corresponding detected signal, and a processing arrangement (160) for processing the detected signal to generate an output signal indicative of a state of the seal (50). The radiation source (510, 520) is arranged to focus the radiation into a plurality of focal points at the seal (50) of the item (20), wherein the focal points are mutually spatially spaced apart. Moreover, the detector (530, 540) is arranged to image one or more of the focal points and to be selectively sensitive to an intensity of radiation received from the one or more focal points to generate a detected signal. Furthermore, the measuring apparatus (200) includes a processing arrangement (160) for receiving the detected signal and for processing the detected signal to generate the output signal indicative of the state of the seal (50).
Abstract:
The objective is to develop a method for determining the quality of a liquid product containing polyphenols. The present invention is a method that is a significant improvement over existing methods that use conventional laboratory instrumentation to study the quality of liquid products. The method uses an adsorption cell with a small mirror as a reflecting surface and acts as a substrate for the adsorption of the liquid's polyphenols on its surface. The polyphenol's film thickness is measured by laser ellipsometry. Light from a monochromatic light source is reflected from the thin film of polyphenol, which changes the light's optical properties and are sensed using the principles of ellipsometry. The changes in state of polarized light are translated into graphical illustrations of measured and computed parameters that can be recognized and interpreted as distinctive properties of liquid product quality.
Abstract:
Methods and apparatus for concentration determination using polarized light. The apparatus includes a first polarized light source having a first light source polarization axis and a second polarized light source having a second light source polarization axis generally perpendicular to the first light source polarization axis. Also, a first polarized light receiver having a first polarized light receiver polarization axis and configured to measure an intensity of light transmitted from the first light receiver polarizer and a second polarized light receiver having a second polarized light receiver polarization axis substantially perpendicular to the first light receiver polarization axis and configured to measure an intensity of light transmitted from the second light receiver polarizer, wherein the first and second light receiver polarization axes are generally +/−45 degrees relative to the first and second light source polarization axes.
Abstract:
To detect an infinitesimal defect, highly precisely measure the dimensions of the detect, a detect inspection device is configured to comprise: a irradiation unit which irradiate light in a linear region on a surface of a sample; a detection unit which detect light from the linear region; and a signal processing unit which processes a signal obtained by detecting light and detecting a defect. The detection unit includes: an optical assembly which diffuses the light from the sample in one direction and forms an image in a direction orthogonal to the one direction; and a detection assembly having an array sensor in which detection pixels are positioned two-dimensionally, which detects the light diffused in the one direction and imaged in the direction orthogonal to the one direction, adds output signals of each of the detection pixels aligned in the direction in which the light is diffused, and outputs same.
Abstract:
A glucose sensor comprising an optical energy source having an emitter with an emission pattern; a first polarizer intersecting the emission pattern; a second polarizer spaced a distance from the first polarizer and intersecting the emission pattern, the second polarizer rotated relative to the first polarizer by a first rotational amount Θ; a first optical detector intersecting the emission pattern; a second optical detector positioned proximal to the second polarizer, the first polarizer and the second polarizer being positioned between the optical energy source and the second optical detector, the second optical detector intersecting the emission pattern; a compensating circuit coupled to the second optical detector; and a subtractor circuit coupled to the compensating circuit and the first optical detector.