Abstract:
L'invention concerne un dispositif de contact d'un aéronef avec une aire de réception (100), comprenant au moins un sac gonflable (5) associé à des moyens d'admission et d'échappement (15) d'un fluide de gonflage et à des moyens de fixation (7) du sac (5) sous l'aéronef, une cloison (8) divisant le sac gonflable en un premier compartiment (9) auquel sont reliés les moyens d'admission et d'échappement et un deuxième compartiment (10) relié au premier compartiment par un organe de passage unidirectionnel (11) fixé à la cloison pour laisser passer le fluide de gonflage du premier compartiment vers le deuxième compartiment. L'invention a également pour objet un aéronef équipé d'un tel dispositif.
Abstract:
Method and systems for starting propeller driven aircraft and other devices. A system in accordance with one embodiment of the invention includes a removable fixture (130) that is coupled to the propeller (120) and has at least one portion (131a) exposed to a flowstream to rotate the propeller during engine start-up. The fixture is configured to separate from the propeller after the engine (110) begins to turn over (e.g., after the engine starts and/or rotates above a threshold rate). Accordingly, the system can include a releasable link (132) between the fixture and the propeller.
Abstract:
A portable unmanned air vehicle and launcher system is provided that includes a foldable unmanned air vehicle having a pressure tube; a launch gas reservoir for holding launch gas; a launch tube operatively connected to the launch gas reservoir and having a free end that is positioned in the pressure tube of the air vehicle; a free piston positioned within the launch tube; and a free piston stop to prevent the free piston from leaving the launch tube. A first portion of the launch gas in the launch gas reservoir is released into the launch tube and forces the free piston from an initial position to an end position at which the free piston is stopped by the free piston stop.
Abstract:
Methods and apparatuses for assembling, launching, recovering, disassembling, capturing, and storing unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the aircraft can be assembled from a container with little or no manual engagement by an operator. The container can include a guide structure to control motion of the aircraft components. The aircraft can be launched from an apparatus that includes an extendable boom. The boom can be extended to deploy a recovery line to capture the aircraft in flight. The aircraft can then be returned to its launch platform, disassembled, and stored in the container, again with little or no direct manual contact between the operator and the aircraft.
Abstract:
A heavier-than-air air vehicle (1), particularly a long endurance, solar powered, unmanned aerial vehicle (UAV) intended for "perpetual" flight within the stratosphere, is carried to its operational altitude suspended on a tether (14) from a helium balloon (16). The tether is attached at or towards a tip of the UAV's wing (3) so that it is carried in effectively a 90° banked attitude. At the desired altitude the UAV's powerplant is started and it flies on its tether in an upwardly-spiralling path relative to the balloon until a level or near level attitude is attained, when the tether is released and the UAV is permitted to assume free flight.
Abstract:
A micro air vehicle having a bendable wing enabling the micro air vehicle to fly. The bendable wing may be bent downwards so that the wingspan may be reduced for storing the micro air vehicle. The bendable wing may be formed from one or more layers of material, and the wing may have a camber such that a concave surface of the wing faces downward. The wing may substantially resist flexing upwards and may transfer uplift forces to a central body of the micro air vehicle. In addition, the wing may be bent severely downwards by applying a force to tips of the wing. The micro air vehicle is capable of being stored in a small cylindrical tube and may be deployed from the tube by simply releasing the micro air vehicle from the tube.
Abstract:
A flyer assembly is adapted for launching with, transit in, and deployment from an artillery shell having a central void region extending along a ballistic shell axis. The flyer assembly includes a jettisonable shroud and a flyer. The shroud extends along a shroud axis, and is positionable within the central void region with the shroud axis substantially parallel to the shell axis. The flyer is adapted to withstand a launch acceleration force along a flyer axis when in a first state, and to effect aerodynamic flight when in a second state. When in the first state, the flyer is positionable within the shroud with the flyer axis parallel to the shroud axis and the shell axis. The flyer includes a body member disposed about the flyer axis, and a foldable wing assembly mounted to the body member. The wing assembly is configurable in a folded state characterized by a plurality of nested wing segments when the flyer is in the first state. The wing assembly is configurable in an unfolded state characterized by a substantially uninterrupted aerodynamic surface when the flyer is in the second state. The flyer assembly is adapted to be launched from a ballistic delivery system such as an artillery cannon, and can thus reach a target quickly, without expending system energy stored within the flyer. During launch, the flyer is coupled to the shroud so as to maintain a portion of the flyer in tension during an acceleration of the flyer along the flyer axis resulting from the launch. The flyer assembly is adapted to withstand the high g-load an high temperature environments of a cannon launch, and can tolerate a set-back g load of about 16,000 g.
Abstract:
A unmanned aerial vehicle (UAV) base station for automated battery pack exchange and methods for manufacturing and using the same. The UAV base station includes a battery-exchange system disposed within a housing having a top-plate. The housing contains a battery array having a plurality of UAV battery packs and a mechanical mechanism for automatically removing an expended battery pack from a UAV that lands on the top-plate and replacing the expended battery pack with a charged battery pack. Thereby, the UAV base station system advantageously enables extended and autonomous operation of the UAV without the need for user intervention for exchanging UAV battery packs.
Abstract:
A system for homing and recharging an unmanned vehicle comprises a plurality of homing layers operative along the radius of an imaginary circle that has the homing target at its center, each homing layer consisting of a sub-system provided with location means of increasing accuracy relative to that of a sub-system that operates along said radius farther away, from the center of said circle.
Abstract:
An aerial vehicle includes one or more rotors and a cargo container. The one or more rotors are configured to propel the aerial vehicle. The cargo container defines a cargo volume and is configured to travel with the aerial vehicle during propulsion by the one or more rotors. The cargo container is further configured to contain, at least, the one or more rotors, when the aerial vehicle is not configured for moving cargo.