Abstract:
Ein bekanntes Lampenmodul für Spektralanalysevorrichtungen umfasst einen Lampenaufnahmekörper, der zur Aufnahme einer Deuteriumlampe mit einem Lampenkolben aus synthetischem Quarzglas einen Hohlraum mit einer Strahlaustrittsöffnung aufweist, die mit einem optischen Durchstrahlungselement verschlossen ist. Um hiervon ausgehend ein Lampenmodul mit einer Deuteriumlampe mit Ozonfilter bereitzustellen, das eine lange Lebensdauer zeigt, das kostengünstig herstellbar ist und eine hohe Intensität im Wellenlängenbereich zwischen 190 nm und 250 nm gewährleistet, wird erfindungsgemäß vorgeschlagen, dass in der Strahlaustrittsöffnung und auf der der Deuteriumlampe zugewandten Seite des optischen Durchstrahlungselements ein VUV-Kantenfilter vorgesehen ist.
Abstract:
Various systems for measurement or analysis of a specimen are provided. One system includes a first optical subsystem, which is disposed within a purged environment (224). The purged environment (224) may be provided by a differential purging subsystem. The first optical subsystem performs measurements using vacuum ultraviolet light. This system also includes a second optical subsystem, which is disposed within a non-purged environment. The second optical subsystem performs measurements using non-vacuum ultraviolet light. Another system includes two or more optical subsystems configured to perform measurements of a specimen using vacuum ultraviolet light. The system also includes a purging subsystem configured to maintain a purged environment around the two or more optical subsystems. The purging subsystem is also configured to maintain the same level of purging in both optical subsystems. Some systems also include a cleaning subsystem configured to remove contaminants from a portion of a specimen prior to measurements at vacuum ultraviolet wavelengths.
Abstract:
A spectrometer is provided with an integrating sphere 20, inside which a sample S of a measurement target is disposed and which is adapted for observing measured light emitted from the sample S, and a Dewar vessel 50 which retains a refrigerant R for cooling the sample S and at least a portion of which is located so as to face the interior of the integrating sphere 20. Gas generated from the refrigerant R is introduced through predetermined gaps G1-G6 functioning as a gas introduction path and through a plurality of communicating passages 64 formed in a support pedestal 61, into the integrating sphere 20. The gas introduced into the integrating sphere 20 absorbs water in the integrating sphere 20 to decrease the temperature in the integrating sphere 20, so as to prevent dew condensation from occurring on a portion of a second container portion 50b of the Dewar vessel 50 exposed in the integrating sphere 20. This can prevent occurrence of dew condensation even in the case where the sample S is measured in a cooled state at a desired temperature.
Abstract:
A Spectrometer is provided including a camera and an axial symmetric camera mount configured to receive the camera and to rotate. The spectrometer furthers include an input for providing optical radiation to a spectrometer system; a diffraction grating for dispersing the optical radiation along a prescribed plane; at least one lens for focusing wavelength-dispersed light onto at least one array of a detector of optical radiation, wherein the camera has at least one linear array of elements for detecting optical radiation; a mechanical housing, wherein the axial symmetric camera mount is configured to couple the camera to the mechanical housing; and a means for rotating the camera coupled to the mechanical housing about an axis. Related systems and methods are also provided.
Abstract:
A spectral module 1 comprises a substrate 2 for transmitting light L1 incident thereon from a front face 2a, a lens unit 3 for transmitting the light L1 incident on the substrate 2, a spectroscopic unit 4 for reflecting and spectrally resolving the light L1 incident on the lens unit 3, and a photodetector 5 for detecting light L2 reflected by the spectroscopic unit 4. The substrate 2 is provided with a recess 19 having a predetermined positional relationship with alignment marks 12a, 12b and the like serving as a reference unit for positioning the photodetector 5, while the lens unit 3 is mated with the recess 19. The spectral module 1 achieves passive alignment between the spectroscopic unit 4 and photodetector 5 when the lens unit 3 is simply mated with the recess 19.
Abstract:
The present invention relates to a color measurement device for measuring the color of a target object, the device comprising: an illumination system including an illumination source having at least a white portion in combination with a chromatic portion, the illumination system being structured to generate light in all portions of the visible spectrum and provide spatially uniform illumination at a given target distance from the target object sufficient to spatially over-illuminate a predetermined target area on the target object, wherein the illumination system further comprises an illumination lens structured for operative association with the illumination source, the illumination lens comprising at least one optically fast lens, and at least one spatial intensity filter positioned in operative association with the illumination lens; an optical collection system structured for non-contact color measurement of the target object, wherein the optical collection system is positioned in the device to function at a distance from the target object and receive light reflected therefrom, the optical collection system further comprising an image-based collection optic having a field stop at an image plane to define a target area plane for the target object; and a color engine in communication with the optical collection system configured for spectrally analyzing light detected by the optical communication system.
Abstract:
An optical or infrared spectrometer is suitable for on-line measurements for industrial, agricultural, field, commercial and other applications. Optical spectrometers are very useful for various analytical measurements. On-line operation is needed for obtaining real-time information, which is useful e.g. for process automation and quality control needs. The invention is based on optical design optimized for measuring moving samples at a distance and includes a light guide for signal homogenization, a linear variable filter for defining multiple measurement wavelengths as well as a linear detector array for detecting optical signals relating to the different wavelengths. There is an element for cooling and stabilizing the operating temperature of both the linear detector array and the linear variable filter, while the spectrometer is operating in variable environmental conditions. Thanks to the optical signal chain designed to maximize the radiance at the detector, the proposed spectrometer can provide high signal-to-noise ratio and high speed.
Abstract:
An optical apparatus for measurement of industrial chemical processes. The analyzer uses Raman scattering and performs measurement of chemical concentrations in continuous or batch processes. The analyzer operates at a standoff distance from the analyte (or analytes) and can measure concentrations through an optical port, facilitating continuous, non-destructive, and non-invasive analysis without extracting the analyte or analytes from the process. The analyzer can measure one or several solid, liquid, or gaseous analytes, or a mixture thereof.