Abstract:
The invention discloses an optical measurement system for measuring the optical properties of a device under test (DUT). The optical measurement system includes a DUT, a light measuring module, a light guiding module and an analyzing module. The present invention utilizes the light guiding module to receive an axial ray of the rays emitted by the DUT so as to analyze the optical properties thereof. Thus, the present invention is not only capable of measuring the light intensity of the rays emitted by the DUT, but also capable of obtaining the properties of the axial ray emitted by the DUT.
Abstract:
LED based illumination modules are realized that are visually color matched to light sources not based on LEDs based on visually matched color spaces. A visually matched color space is employed to both instrumentally and visually match an LED based light source with a light source not based on LEDs. In one aspect, an LED based illumination module is realized to achieve a target color point in a visually matched color space within a predetermined tolerance. In another aspect, an LED based illumination module is realized to visually match a light source not based on LEDs. A target color point in the CIE 1931 XYZ color space is derived based at least in part on the spectrum of the visually matched LED based illumination module. LED based illumination modules visually matched to light sources not based on LEDs are realized based on the derived target color point.
Abstract:
The invention discloses a method of constructing light-measuring look-up table, a light-measuring method, and a light-measuring system. The method of constructing light-measuring look-up table is to construct a look-up table by according to spectrum parameters relative to a light spectrum model, three actual color-matching functions relative to the light-measuring system and three standard color-matching functions, calculating both a look-up color coordinate and a reference color coordinate corresponding to each of the spectrum parameters. The light-measuring method includes: first, measuring a to-be-measured light by the light-measuring system to obtain actual stimulus values and calculating an actual color coordinate; then, comparing the actual color coordinate with the look-up color coordinates to determine both a to-be-measured light spectrum parameter and an estimated color coordinate relative to the to-be-measured light; furthermore, according to the to-be-measured light spectrum parameter, one of the standard color-matching functions and one of the actual stimulus values, calculating an estimated luminance.
Abstract:
The invention relates to a spectral detector for measuring properties of light over portions of the electromagnetic spectrum including cholesteric liquid crystal material and switching means capable of varying the pitch of the helix of the cholesteric liquid crystal material, so that the position of the transmission wavelength band is adjusted in response to the switching means. The spectral detector may further include at least one light direction selecting structure for selecting light incident on the spectral detector having a certain angle of incidence. This invention also relates to a lighting system including the spectral detector of the invention.
Abstract:
Disclosed examples of lighting systems having at least three light sources of different colors may be controlled by validating input settings representing chromaticity and/or intensity of desired light to be generated by determining if the respective lighting system is capable of generating the desired light. This may involve comparing the chromaticity and/or intensity to a three-dimensional gamut representing chromaticity and associated intensities that the lighting system is capable of generating. The top contour of the gamut represents the maximum intensities for every chromaticity which the lighting system is capable of generating. Specifically the top contour is defined by points representing the maximum attainable intensities that each light source is capable of generating and the maximum intensity attainable by the lighting system.
Abstract:
In the color imaging system, multiple rendering devices are provided at different nodes along a network. Each rendering device has a color measurement instrument for calibrating the color presented by the rendering device. A rendering device may represent a color display in which a member surrounds the outer periphery of the screen of the display and a color measuring instrument is coupled to the first member. The color measuring instrument includes a sensor spaced from the screen at an angle with respect to the screen for receiving light from an area of the screen. A rendering device may be a printer in which the measuring of color samples on a sheet rendered by the printer is provided by a sensor coupled to a transport mechanism which moves the sensor and sheet relative to each other, where the sensor provides light from the sample to a spectrograph. The color measuring instruments provide for non-contact measurements of color samples either displayed on a color display, or printed on a sheet, and are self-calibrating by the use of calibration references in the instrument.
Abstract:
In the color imaging system, multiple rendering devices are provided at different nodes along a network. Each rendering device has a color measurement instrument for calibrating the color presented by the rendering device. A rendering device may represent a color display in which a member surrounds the outer periphery of the screen of the display and a color measuring instrument is coupled to the first member. The color measuring instrument includes a sensor spaced from the screen at an angle with respect to the screen for receiving light from an area of the screen. A rendering device may be a printer in which the measuring of color samples on a sheet rendered by the printer is provided by a sensor coupled to a transport mechanism which moves the sensor and sheet relative to each other, where the sensor provides light from the sample to a spectrograph. The color measuring instruments provide for non-contact measurements of color samples either displayed on a color display, or printed on a sheet, and are self-calibrating by the use of calibration references in the instrument.
Abstract:
The present system provides a sensor clip system that can be clipped to luminaires of a plurality of shapes and sizes and method of using the sensor clip. Some of the sensors are upward looking (into the luminaire) while others are downward looking (away from the luminaire); and thus face in substantially opposite directions. The sensor clip is adjustable in one, two or three dimensions to be able to easily fit with different sized and shaped luminaires, such that the upward looking sensors may face the incoming light and downward looking sensors face away from the light. The sensor clip system may also provide attenuation of the luminous intensity of the emitted light coming out of the luminaires and extends the longevity and usability of the embedded sensor.
Abstract:
Die Erfindung betrifft ein Verfahren zur Kalibrierung eines Spektralradiometers (1), mit den folgenden Verfahrensschritten: Aufnahme von Lichtmessdaten durch Vermessung der Strahlung wenigstens einer Normallichtquelle (4) mittels des zu kalibrierenden Spektralradiometers (1),Ableitung von Kalibrierdaten aus den Lichtmessdaten durch Vergleich der aufgenommenen Lichtmessdaten mit bekannten Daten der Normallichtquelle (4), und Kalibrierung des Spektralradiometers (1) gemäß den Kalibrierdaten. Aufgabe der Erfindung ist, ein zuverlässiges und praktikables Verfahren zur Kalibrierung des Spektralradiometers (1) bereitzustellen. Insbesondere soll auf einfache und zuverlässige Weise ein Gleichlauf von an verschiedenen Standorten (9, 10, 11) befindlichen Spektralradiometern (1) hergestellt werden. Hierzu schlägt die Erfindung vor, dass die Gültigkeit, d.h. die Verwendbarkeit der Normallichtquelle für die Kalibrierung überprüft wird, indem die Lichtmessdaten der Normallichtquelle (4) mit Lichtmessdaten einer oder mehrerer weiterer Normallichtquellen (4) gleichen Typs verglichen werden, wobei die Gültigkeit der Normallichtquelle (4) festgestellt wird, falls die Abweichungen der Lichtmessdaten der Normallichtquellen (4) voneinander unterhalb vorgegebener Grenzwerte liegen, und/oder die Normallichtquelle (4) mittels zweier oder mehrerer Normalspektralradiometer (1') gleichen oder unterschiedlichen Typs vermessen wird, wobei die Gültigkeit der Normallichtquelle (4) festgestellt wird, falls die Abweichungen der mittels der verschiedenen Normalspektralradiometer (1') aufgenommenen Lichtmessdaten voneinander unterhalb vorgegebener Grenzwerte liegen.
Abstract:
Die Erfindung betrifft eine Anordnung zur orts- und wellenlängenaufgelösten Erfassung von Lichtstrahlung, die von mindestens einer OLED (1) oder LED emittiert wird. Zwischen einer Elektrode (3,4), einer OLED oder LED und einem Substrat ist ein Mehrschichtsystem (2), das mit alternierend übereinander ausgebildeten Schichten aus einem Material mit höherem und niedrigerem optischen Brechungsindex n gebildet ist, angeordnet. Dabei tritt von der mindestens einen OLED oder LED Lichtstrahlung mit mehreren unterschiedlichen Wellenlängen λ1, ⋋2, ⋋3,...⋋n so aus dem Mehrschichtsystem aus. Lichtstrahlung, die mit unterschiedlichen Wellenlängen λ1, ⋋2, λ3,...⋋n mit definierten Winkeln austritt, trifft nach mindestens einfacher Brechung an einem optischen Element (10,11) oder nach Reflexion an einer Schicht oder einem Schichtsystem eines Sensors (12) auf mindestens ein Detektorarray (9, 9.1), so auf, dass Lichtstrahlung mit einer Wellenlänge λ1, ⋋2, ⋋3,... oder ⋋n auf jeweils ein Detektorelement des Detektorarrays auftrifft. Die Detektorelemente des Detektorarrays sind diskret zueinander angeordnet.