Abstract:
A downhole fluid analysis tool has a tool housing and a fluid analysis device. The tool housing is deployable downhole and has at least one flow passage for a fluid sample. The fluid analysis device is disposed in the tool housing relative to the flow passage. Inside the device, one or more sources generate a combined input electromagnetic signal across a spectrum of wavelengths, and a routing assembly routes generated signals into the reference and measurement signals. At least one wheel having a plurality of filters is rotated to selectively interpose one or more of the filters in the paths of the reference and measurement signals.
Abstract:
The present invention provides novel microfluidic substrates and methods that are useful for performing biological, chemical and diagnostic assays. The substrates can include a plurality of electrically addressable, channel bearing fluidic modules integrally arranged such that a continuous channel is provided for flow of immiscible fluids.
Abstract:
A process analysis unit includes a base module and an exchangeable cartridge module. The base module comprises at least one independent pump drive, and an analyte sensor without a fluidic measuring section. The cartridge module comprises a liquid reservoir tank, a sample taking device, at least one drive-less pump mechanism configured as a peristaltic membrane pump, a fluidic measuring section for the analyte sensor, and a plastic material plate with groove-like microfluidic channels configured to connect the liquid reservoir tank, the at least one drive-less pump mechanism, and a measuring section. The drive-less pump mechanism is driven pneumatically and pumps a liquid from the liquid reservoir tank. When the cartridge module is connected to the base module, the at least one drive-less pump mechanism is connected to and is driven by the at least one independent pump drive, and the fluidic measuring section is connected to the analyte sensor.
Abstract:
A cartridge and cartridge system for use in an apparatus for analyzing a sample are provided. The system has a plurality of cartridges for different applications for a multimode instrument. The cartridges are removably engaged with a cartridge support in a “plug-in” format such that one cartridge may be removed from the apparatus and another cartridge may be easily installed. The cartridge support includes a plurality of cartridge positions that receive cartridges concurrently. One of the cartridges is a wavelength-tunable cartridge in which different light sources, excitation filters, and/or emission filters may be selected. Tuning is further accomplished by tilting the excitation or emission filters at desired angles relative to a beam of exciting light or emitted light.
Abstract:
A system for the rapid characterization of analytes in saliva. In one embodiment, a system for detecting analytes includes a light source, a sensor array, and a detector. The sensor array is formed from a supporting member, in which a plurality of cavities may be formed. A series of chemically sensitive particles, in one embodiment, are positioned within the cavities. The particles may produce a signal when a receptor, coupled to the particle, interacts with the cardiovascular risk factor analyte and the particle-analyte complex is visualized using a visualization reagent. Using pattern recognition techniques, the analytes within a multi-analyte fluid may be characterized. In an embodiment, each cavity of the plurality of cavities is designed to capture and contain a specific size particle. Flexible projections may be positioned over each of the cavities to provide retention of the particles in the cavities.
Abstract:
A multichannel fluorosensor includes an optical module and an electronic module combined in a watertight housing with an underwater connector. The fluorosensor has an integral calibrator for periodical sensitivity validation of the fluorosensor. The optical module has one or several excitation channels and one or several emission channels that use a mutual focusing system. To increase efficiency, the excitation and emission channels each have a micro-collimator made with one or more ball lenses. Each excitation channel has a light emitting diode and an optical filter. Each emission channel has a photodiode with a preamplifier and an optical filter. The electronic module connects directly to the optical module and includes a lock-in amplifier, a power supply and a controller with an A/D converter and a connector. The calibrator provides a response proportional to the excitation intensity, and matches with spectral parameter of fluorescence for the analyzed fluorescent substance.
Abstract:
The present invention provides novel microfluidic substrates and methods that are useful for performing biological, chemical and diagnostic assays. The substrates can include a plurality of electrically addressable, channel bearing fluidic modules integrally arranged such that a continuous channel is provided for flow of immiscible fluids.
Abstract:
An in-situ technique is provided for automatically verifying proper operation of a photometric device, such as a cell density probe (CDP). The CDP has a first detector and a second detector. The first detector senses light that is transmitted from a light source of the CDP. The second detector senses light that has passed through an optical gap at a tip of the CDP, wherein the sensed light has been reduced in intensity due to light absorption. Electrical current provided to the light source is reduced, and the resultant values of a light characteristic (such as intensity) are sensed. These values from the detectors are compared against one or more predicted values. If the CDP is operating properly, the values from the detectors will be consistent with the predicted values. If there is a malfunction in the CDP, then the values from the detectors will be inconsistent with the predicted values.
Abstract:
Techniques are described for the detection of multiple target species in real-time PCR (polymerase chain reaction). For example, a system is described that includes a data acquisition device and a detection device coupled to the data acquisition device. The detection device includes a rotating disk having a plurality of process chambers having a plurality of species that emit fluorescent light at different wavelengths. The device further includes a plurality of optical modules. Each of the optical modules is optically configured to excite the species and capture fluorescent light emitted by the species at different wavelengths. A fiber optic bundle coupled to the plurality of optical modules conveys the fluorescent light from the multiple optical modules to a single detector.
Abstract:
A modular optical detector system. The detector system is designed to detect the presence of molecules or molecular species by inducing fluorescence with exciting radiation and detecting the emitted fluorescence. Because the system is capable of accurately detecting and measuring picomolar concentrations it is ideally suited for use with microchemical analysis systems generally and capillary chromatographic systems in particular. By employing a modular design, the detector system provides both the ability to replace various elements of the detector system without requiring extensive realignment or recalibration of the components as well as minimal user interaction with the system. In addition, the modular concept provides for the use and addition of a wide variety of components, including optical elements (lenses and filters), light sources, and detection means, to fit particular needs.