Abstract:
In a method and apparatus (400), a property of an optically diffuse medium comprising a first optical absorber having a first concentration and a second optical absorber having a second concentration is determined. A surface area (406) of the medium is imaged at multiple wavelengths around an isosbestic wavelength of the first absorber and the second absorber. A reflectance spectrum of the medium at the surface area at the multiple wavelengths is determined. A derivative of the determined reflectance spectrum around the isosbestic wavelength is determined. From the derivative, a concentration ratio of the first concentration and the second concentration is estimated.
Abstract:
A transmission Raman spectroscopy apparatus has a light source for generating a light profile on a sample, a photodetector having at least one photodetector element, collection optics arranged to collect Raman scattered light transmitted through the sample and direct the Raman light onto the at least one photodetector element and a support for supporting the sample. The support and light source are arranged such that the light profile can be moved relative to the sample in order that the at least one photodetector element receives Raman scattered light generated for different locations of the light profile on the sample.
Abstract:
In the scanning molecule counting method which detects light of a light-emitting particle in a sample solution using a confocal or multiphoton microscope, there is provided an optical analysis technique enabling the scanning in a sample solution with moving a light detection region in a broader area or along a longer route while making the possibility of detecting the same light-emitting particle as different particles as low as possible and remaining the size or shape of the light detection region unchanged as far as possible. In the inventive optical analysis technique, there are performed detecting light from the light detection region and generating time series light intensity data during moving the position of the light detection region along the second route whose position is moved along the first route in a sample solution, and thereby, the signal indicating light from each light-emitting particle existing in a predetermined route is individually detected using the time series light intensity data.
Abstract:
Even when the distance from an objective lens to a sample differs, the distribution of light from the sample can be detected accurately. A first lens 23 for converting light from the objective lens into parallel light is composed of a concave lens part 32 having a concave curved face 32c in a center portion of a flat face 32a, and a convex lens part 33 having a convex curved face 33c around a flat face 33b. Further, the first lens 23 includes first and second regions for diverging light through the flat face 33b and the concave curved face 32c and a third region for collecting light through the convex curved face 33c and the concave curved face 32c. When the sample is placed on a sample table while being sealed in a two-dimensional electrophoresis substrate, light totally reflected by a side surface of the objective lens is caused to enter the second region. In contrast, when the sample is directly placed on the sample table, the light is caused to enter the third region. As a result, in any of the cases, the rays of light d emitted from the first lens 23 are nearly parallel to one another, and are nearly parallel to the optical axis.
Abstract:
In the scanning molecule counting method which detects light of a light-emitting particle in a sample solution using a confocal or multiphoton microscope, there is provided an optical analysis technique enabling the scanning in a sample solution with moving a light detection region in a broader area or along a longer route while making the possibility of detecting the same light-emitting particle as different particles as low as possible and remaining the size or shape of the light detection region unchanged as far as possible. In the inventive optical analysis technique, there are performed detecting light from the light detection region and generating time series light intensity data during moving the position of the light detection region along the second route whose position is moved along the first route in a sample solution, and thereby, the signal indicating light from each light-emitting particle existing in a predetermined route is individually detected using the time series light intensity data.
Abstract:
A method and apparatus of analyzing a body, wherein a first radiation (X rays) transmitted through the body and a second radiation (visible, IR and/or ultraviolet radiation) reflected by the body surface are detected at each point of a series of investigated points. The data collected for each scanning point are processed so as to maintain the correspondence between the images obtained using the different techniques.
Abstract:
There is disclosed a colour assessment apparatus comprising a sample carrier, magnifying optics to capture light from defined locations of a sample located on the sample carrier, means for analyzing the light captured by the magnifying optics to measuring colour values of the defined locations of the sample, means for automatically displacing the optical means relative to the sample carrier in order to the apparatus to scan a succession of locations of the sample and to measure colour values of the sample for each location, memory means for storing a table of location information correlated with colour value information, means for inputting a colour value of a reference sample, and means for analyzing the table so as to determine locations of any colour values from the sample that match the colour value of the reference sample.
Abstract:
A precision machine vision inspection system and method for increased inspection throughput. The vision inspection system includes a movable stage for scanning and measuring selected workpiece features. In prior systems, conventional interspersing of image processing and inspection operations with image acquisition operations required stopping and starting the stage motion during image acquisition, necessitating associated delays or wait-states in various operations. Such delays are avoided in this invention by acquiring images continuously, with a timing that is independent of image inspection operations, so that delays and wait-states are avoided. In addition, continuous stage motion is combined with a strobe lighting feature during the image acquisition operations to acquire blur-free images at a high rate. Improved image acquisition and image analysis routines including these features are created and stored by the system.
Abstract:
A laser processing device includes a Z stage (4) movable in the up and down directions with respect to a XY stage (3) movable in the X, Y directions on which an object to be processed is provided. The surface of the object to be processed is image-sensed by a CCD camera (7) through a lens of an electrically-driven revolver (5) attached to the Z stage, which is projected in a monitor (40). When a defect of the object is displayed in the monitor (40), a laser beam is radiated to a defective portion of the object from a laser head (9) provided in the Z stage and the defective portion is removed.