Abstract:
A system for operating an electric door release having an actuator powered by an energy harvester. The actuator may be a piezoelectric actuator and the harvester may be a piezo harvester. The system may further include a power module, a rechargeable battery and a voltage boost circuit disposed between the energy harvester and the actuator. When a piezoelectric actuator is used, a recycle actuator discharge circuit may be disposed between the piezoelectric actuator and the power module battery for recapturing a portion of the energy delivered to the piezoelectric actuator. The piezoelectric harvester may include an energy input portion whereby the piezo electric harvester is excited by the energy input portion. The energy input portion may include a circular or linear driving gear for exciting the piezoelectric harvester or a stepper motor generator, driven by movement of a door. The harvester may also be a stepper motor/generator.
Abstract:
A drive apparatus for boarding and unboarding devices, in particular for passenger doors, boarding ramps, retractable steps and the like on public transport vehicles having an electric drive motor the driven element of which is connected to the input element of a first reduction gear the output element of which is coupled to the actuation devices for the boarding and unboarding devices where the drive apparatus is constructed as a compact drive where the electric drive motor, the first reduction gear and a second reduction gear as well as an energizable clutch are disposed axially behind each other inside a tubular housing between the first reduction gear and the second reduction gear.
Abstract:
A vehicle door arrangement having a vehicle door for closing a door opening in a bodywork of a vehicle, in particular a motor vehicle, and having a pivoting device, which comprises a carrier arm bearing the weight of the vehicle door and at least one guide arm controlling the movement of the vehicle door, wherein the carrier arm and the guide arm are of the same length and are arranged pivotally mounted on the vehicle door and the bodywork in such a way that the arms form a parallelogram. The support arm is pivotally mounted level with a horizontal bodywork section defining a lower limit of the door opening.
Abstract:
A drive mechanism for a door operator comprises a drive member and a driven member. The drive member is adapted to be operably connected between a motor assembly for rotating the drive member and a door closer assembly rotating with the driven member. The drive member and the driven member both include a protrusion. The driven member protrusion moves in the free space defined by driving surfaces of the drive member protrusion. Rotation of the drive member from a first angular orientation to a second angular orientation causes rotation of the driven member for powered opening of the door. The driven member protrusion moves in the free space without engaging the protrusion surfaces when the door is opened manually and allowed to close.
Abstract:
The present invention related to a door jamb finger guard. The finger guard comprises a door lock for preventing closure of the door, a housing for the door lock and a spring activated plate. The spring activated plate is activateable by a door closing obstacle for automatically moving the door lock between an inactive position and an active position. In the inactive position, the door lock is recessed within the housing, while in the active position, the door lock projects from the housing to prevent closure of the door.
Abstract:
Systems, methods, and devices that efficiently stop and latch a door are presented. A first bracket component is attached to a door frame and has an overhang portion, comprising a holder component, that extends into the doorway to act as a door stop. A second bracket component, comprising an extended portion, is desirably adjusted in position in relation to the holder component and attached to the door such that the extended portion has a desired amount of overlap on the holder component, wherein the amount of overlap corresponds to an amount of latching force in accordance with the force profile associated with the extended portion based at least in part on shape of the extended portion. An operation device is attached to the first bracket component and/or second bracket component and the door latching holds the door in the desired position to facilitate operations of the operation component.
Abstract:
A guide rail assembly for moving a closure panel of a motor vehicle between an open position and a closed position includes a guide rail fixedly secured to the motor vehicle. A slide mechanism slidably engages the guide rail. A rod has one end coupled to the slide mechanism and an opposing end coupled to the closure panel to move the closure panel as the slide mechanism slides along the guide rail. A drive is fixedly secured to the guide rail for selectively driving the slide mechanism along the guide rail. A clasp is operatively secured to the slide mechanism for selectively coupling the drive to the slide mechanism such that the drive moves the slide mechanism along the guide rail to move the closure panel between the open and closed positions when the slide mechanism is coupled with the drive.
Abstract:
A device is provided for closing off an opening formed in the bodywork of a motor vehicle, which includes a fixed structure in which an aperture is defined, and at least one sliding panel exhibiting a surround bearing at least two guide pegs. The device has at least one slide having a groove to accept each of the two guide pegs, the grooves being substantially identical and having an inclined portion forming an angle of between 1 and 89 DEG with the said axis of sliding; a guide element secured to the sliding panel, guided in one of the guide rails; and a return, which controls a relative movement of the slide or slides with respect to the guide element along the said axis of sliding. The sliding panel moves in a direction perpendicular to the plane of the fixed structure.
Abstract:
An electromagnetic frictionally engaged clutch provided with a rotor part including a friction lining. An electrical coil and a first permanent magnet are arranged on the rotor part. The clutch also includes an armature disk which is connected to a second shaft and can be displaced in a rotationally fixed manner, but axially from a coupled end position to an uncoupled end position. The coil of the clutch is enabled to be current-free both in the coupled state and in the uncoupled state. To this end, a second permanent magnet is provided for exerting an axial force opposing the magnetic force of the first permanent magnet on the armature disk.
Abstract:
A spindle drive for a movable component includes a threaded spindle which is rotatable about a spindle axis; a spindle nut which engages the threaded spindle; and a transmission element which can be connected to the movable component, the transmission element being fixed against rotation about the spindle axis and being axially drivable by rotation of the spindle nut. An intermediate element, which is fixed against rotation relative to the spindle nut, extends axially with respect to the threaded spindle and is rotatable relative to the threaded spindle. A drive is connected to rotate one of the intermediate element and the threaded spindle; and the other of the intermediate element and the threaded spindle can be fixed against rotation.