Abstract:
Provided is a field emission display (FED) capable of driving on the basis of current and preventing leakage current caused by thin film transistors (TFTs). The FED includes: a plurality of unit pixels including an emission element in which cathode luminescence of a phosphor occurs and a TFT for driving the emission element; a current source for applying a scan signal to each unit pixel; and a voltage source for applying a data signal to each unit pixel. Here, the on-current of the current source is high enough to take care of the load resistance and capacitance of a scan row within a given writing time, and the off-current of the current source is so low that the electron emission of each pixel can be ignored. In addition, the pulse amplitude or pulse width of the data signal applied from the voltage source is changed, and thereby the gray scale of the display is represented.
Abstract:
An electron emission device to regularly emit electrons and a method of manufacturing the same. Also, an electron emission type backlight unit including the electron emission device in which a high voltage can be applied to an anode and required brightness can be obtained. In addition, the electron emission device can be manufactured using a simplified manufacturing process. The electron emission device includes a first electrode, a second electrode formed opposite the first electrode, and an electron emission layer which is electrically connected to one or each of the first and second electrodes and comprising carbide-derived carbon. The electron emission device may be a display device to form static or dynamic images.
Abstract:
The present invention includes field effect transistors, field emission apparatuses, thin film transistors, and methods of forming field effect transistors. According to one embodiment, a field effect transistor includes a semiconductive layer configured to form a channel region; a pair of spaced conductively doped semiconductive regions in electrical connection with the channel region of the semiconductive layer; a gate intermediate the semiconductive regions; and a gate dielectric layer intermediate the semiconductive layer and the gate, the gate dielectric layer being configured to align the gate with the channel region of the semiconductive layer. In one aspect, chemical-mechanical polishing self-aligns the gate with the channel region. According to another aspect, a field emission device includes a transistor configured to control the emission of electrons from an emitter.
Abstract:
The invention provides an electron beam device 1 comprising at least one field emission cathode 3 and at least one extracting electrode 5, whereby the field emission cathode 5 comprises a p-type semiconductor region 7 connected to an emitter tip 9 made of a semiconductor material, an n-type semiconductor region 11 forming a pn-diode junction 13 with the p-type semiconductor region 7 a first electric contact 15 on the p-type semiconductor region 7 and a second electric contact 17 on the n-type semiconductor region 11. The p-type semiconductor region 7 prevents the flux of free electrons to the emitter unless electrons are injected into the p-type semiconductor region 7 by the pn-diode junction 13. This way, the field emission cathode 3 can generate an electron beam where the electron beam current is controlled by the forward biasing second voltage V2 across the pn-diode junction. Such electron beam current has an improved current value stability. In addition the electron beam current does not have to be stabilized anymore by adjusting, the voltage between emitter tip 9 and extracting electrode 5 which would interfere with the electric field of electron beam optics. The present invention further provides the field emission cathode as described above and an array of field emission cathodes. The invention further provides a method to generate at least one electron beam.
Abstract:
An image formation apparatus is disclosed which includes, within an enclosure configured by a pair of substrates placed face to face and an external frame placed between the substrates, an electron source placed on one of the pair of substrates, an image formation material placed on the other substrate, and spacers placed between the substrates, characterized in that the spacers and the external frame is conductive and device is provided for electrically connecting the spacers and the external frame so that the equipotential surfaces between the spacers and the external frame are quasi-parallel when driven.
Abstract:
New designs of electron devices such as scanning probes and field emitters based on tip structures are proposed. The tips are prepared from whiskers that are grown from the vapor phase by the vapor-liquid-solid technology. Some new designs for preparation of field-emitters and of probes for magnetic, electrostatic, morphological, etc, investigations based on the specific technology are proposed. New designs for preparation of multilever probes are proposed, too.
Abstract:
An apparatus and a method for stabilizing the threshold voltage in an active matrix field emission device are disclosed. The method includes the formation of radiation-blocking elements between a cathodoluminescent display screen of the FED and semiconductor junctions formed on a baseplate of the FED.
Abstract:
Described herein is a resistor layer for use in field emission display devices and the like, and its method of manufacture. The resistor layer is an amorphous silicon layer doped with nitrogen and phosphorus. Nitrogen concentration in the resistor layer is preferably between about 5 and 15 atomic percent. The presence of nitrogen and phosphorus in the silicon prevents diffusion of Si atoms into metal conductive layers such as aluminum, even up to diffusion and packaging temperatures. The nitrogen and phosphorus also prevent defects from forming at the boundary between the resistor layer and metal conductor. This leads to better control over shorting and improved resistivity in the resistor.
Abstract:
An apparatus for stabilizing the threshold voltage in an active matrix field emission device is disclosed. The apparatus includes the formation of radiation-blocking elements between a cathodoluminescent display screen of the FED and semiconductor junctions formed on a baseplate of the FED.
Abstract:
A thrombectomy apparatus for breaking up thrombus or other obstructive material in a lumen of a vascular graft or vessel comprising a flexible sheath, and a wire positioned within the flexible sheath wherein the wire and flexible sheath are relatively movable. The wire is substantially sinuous in configuration and assumes a substantially sinuous shape when in the deployed position and assumes a straighter position in the retracted position. The wire is operatively connected to a motor for rotation of the wire to enable peaks of the sinuous wire to contact a wall of the lumen to break up the thrombus or other obstructive material.