Abstract:
Methods and apparatuses for capturing, recovering, disassembling, and storing unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the boom can be extended to deploy a recovery line to capture the aircraft in flight, a process that can be aided by a line capture device having retainers in accordance with further aspects of the invention. The aircraft can then be returned to its launch platform, disassembled, and stored, again with little or no direct manual contact between the operator and the aircraft, for example, by capturing a first wing of the aircraft and securing a second wing before releasing the first.
Abstract:
Methods and apparatuses for launching, capturing, and storing unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the aircraft can be assembled from a container with little or no manual engagement by an operator. The container can include a guide structure to control motion of the aircraft components. The aircraft can be launched from an apparatus that includes an extendable boom. The boom can be extended to deploy a recovery line to capture the aircraft in flight. The aircraft can then be returned to its launch platform, disassembled, and stored in the container, again with little or no direct manual contact between the operator and the aircraft.
Abstract:
A vehicle for flying and having a forward portion and a rearward portion opposite the forward. The vehicle includes a first pair of wings arranged at the forward portion of the vehicle, a second pair of wings arranged at the rearward portion of the vehicle, and a support structure. The support structure is connected to the forward pair of wings and connected to the rearward pair of wings, the support structure being arranged to drive the forward pair of wings alternately toward each other and apart and drives the second pair of wings alternately toward each other and apart.
Abstract:
Methods and apparatuses for launching unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the aircraft can belaunched from an apparatus that includes a launch carriage that moves along a launch axis. A gripper carried by the launch carriage can have at least one grip portion in contact with the aircraft while the launch carriage accelerates along the launch axis. The at least one grip portion can move out of contact with the fuselage of the aircraft as the launch carriage decelerates, releasing the aircraft for takeoff.
Abstract:
A micro air vehicle having a bendable wing enabling the micro air vehicle to fly. The bendable wing may be bent downwards so that the wingspan may be reduced for storing the micro air vehicle. The bendable wing may be formed from one or more layers of material, and the wing may have a camber such that a concave surface of the wing faces downward. The wing may substantially resist flexing upwards and may transfer uplift forces to a central body of the micro air vehicle. In addition, the wing may be bent severely downwards by applying a force to tips of the wing. The micro air vehicle is capable of being stored in a small cylindrical tube and may be deployed from the tube by simply releasing the micro air vehicle from the tube.
Abstract:
A virtual sensor mast for a ground vehicle and a method for operating a ground vehicle using a virtual sensor mast are disclosed. The virtual sensor mast includes an unmanned airborne vehicle capable of lifting itself from the ground vehicle upon deployment therefrom; a sensor suite mounted to the unmanned airborne vehicle; and a tether between the unmanned airborne vehicle and the ground vehicle over which the sensor suite is capable of communicating sensed data upon deployment. The method includes elevating a tethered unmanned airborne vehicle from the ground vehicle to a predetermined height; sensing environmental conditions surrounding the ground vehicle; and terminating the deployment.
Abstract:
An unmanned flying vehicle comprises an autonomous flying wing having at least two wing portions arranged substantially symmetrically about a center portion. Each wing portion is pivotally attached to each adjoining portion such that the wing portions are foldable for storage and openable for deployment. A preferred form is the so-called seagull wing having four wing portions. The vehicles may be programmable from a mother aircraft whilst being borne to a deployment zone using a data link which may be wireless.
Abstract:
An unmanned airborne reconnaissance system, the unmanned airborne reconnaissance system including a lightweight, portable, powered aircraft and a foldable launch rail, the aircraft, in a broken down condition and the launch rail in a broken down condition fitable inside a box, the box capable of being carried by one man. The launch system includes an elongated launch rail with the carriage assembly, and a propulsion means for accelerating the carriage assembly from one end of the launch rail to the other. The carriage assembly releasably engages the aircraft so as to propel the aircraft from one end of the launch rail to the other. The propulsion may be by a cartridge that explodes and releases a gas through a cylinder, or by elastic cords. The aircraft is guided through the air either by a programmed onboard computer which controls the control surfaces of the aircraft and/or by remote control. The aircraft typically contains a camera for recording and transmitting images received from the ground below.
Abstract:
The invention concerns a remote-controlled flying machine, in particular for surveillance and inspection, capable of hovering and comprising a spherical open-worked resistant shroud integral with a cylindrical fairing wherein rotates a propeller powered by an engine housed in a fuselage secured to the fairing with radial arms and straightening vanes.
Abstract:
On a main body portion of a fluttering apparatus, a wing (left wing) is formed which has a front wing shaft, a rear wing shaft and a wing film provided spreading over the front and rear wing shafts. Further, on the main body portion, a rotary actuator for driving the front wing shaft and a rotary actuator for driving the rear wing shaft are mounted. The front (rear) wing shafts reciprocate in a plane orthogonally crossing an axis of rotation with the actuator serving as the fulcrum. Thus, a moving apparatus is obtained which has superior maneuverability and can move not hindered by any obstacle or geometry both indoors and outdoors.