Abstract:
A fluid system such as a fuel system includes a fluid supply and a pump coupled between the fluid supply and a plurality of fluid delivery devices. The pump can be a cryogenic pump such as for liquefied natural gas, with valve mechanisms to control hydraulic actuation of a piston used to pump the liquefied natural gas. An electrically conductive coil is coupled with the piston. Related methodology is disclosed.
Abstract:
A liquid delivery system is presented. The liquid delivery system comprises a source of fluid coupled to an outlet. The liquid delivery system also includes a hydraulic cylinder coupled to the source of fluid. The hydraulic cylinder has a piston movable between a first limit position and a second limit position during an operational cycle. The hydraulic cylinder is configured to pressurize fluid received from the source of fluid, and deliver the pressurized fluid to the outlet. The liquid delivery system also comprises a rod connected to the piston and extending out of the cylinder. The liquid delivery system also comprises a sensor configured to sense a position of the rod to provide a signal indication of the piston with respect to the first position or the second position. An indication of the sensed position is provided to a controller, and the controller is configured to send a control signal to initiate a normal operation loop based on the sensed position.
Abstract:
A method of controlling a fluid pump. The pump has a plurality of oscillating pistons that travel along a central axis of a piston sleeve. A plurality of pistons is of similar mass within a piston sleeve are provided, and adjacent pistons are positioned to be 180 degrees apart in phase oscillations. An electric coil is provided for each piston, and the position of adjacent pistons is determined. The current to one of the electric coils for a piston is adjusted to maintain the 180 degree difference in phase between oscillations of adjacent pistons.
Abstract:
A system can include an actuator with a piston rod that displaces in response to pressure in the actuator, a seal assembly that seals about the piston rod and includes seal cartridges, each including a dynamic seal sealingly engaging the rod, and each including a static seal sealingly engaging a seal assembly housing, and a port providing communication between a housing exterior and a housing interior between adjacent static seals. A method can include preventing leakage from a well with a seal assembly about a piston rod of a hydraulic actuator, the seal assembly including seal cartridges, each including a dynamic seal that sealingly engages the rod, and each including a static seal that sealingly engages a seal assembly housing, enabling communication through a housing sidewall to a housing interior between adjacent static seals, and reciprocably displacing the rod in response to pressure variations in the actuator.
Abstract:
A controller for operating a rod pumping unit at a pump speed. The controller includes a processor configured to operate a pump piston of the rod pumping unit at a first speed. The processor is further configured to determine a pump fillage level for a pump stroke based on a position signal and a load signal. The processor is further configured to reduce the pump speed to a second speed based on the pump fillage level for the pump stroke.
Abstract:
A method for controlling operation of a pump unit, where the pump unit includes a primary piston pump having a primary piston and a secondary piston pump having a secondary piston. The primary piston pump is fluidically connected with the secondary piston pump. The primary piston pump includes an inlet valve and an outlet valve, and the pump unit operates periodically according to a pump cycle. The method includes determining a fluid pressure of fluid dispensed by the pump unit, and performing a closed loop control of a position of the primary piston in dependence on the fluid pressure of the fluid dispensed by the pump unit during a first time interval of the pump cycle.
Abstract:
Detecting a failure mode of a fluid flow controller configured to control fluid flow between first and second chambers of a downhole positive displacement pump and a flow line, wherein the positive displacement pump comprises a piston moving in an axial reciprocating motion, and subsequently adjusting operation of the downhole positive displacement pump based on the detected failure mode such that the downhole positive displacement pump piston operates differently in different axial directions.
Abstract:
Compressors and methods for determining optimal parking positions for compressor pistons are provided. A method includes performing a current value evaluation for an initial time during operation of a motor of the compressor. Performing the current value evaluation includes measuring a motor current value at the time and comparing the motor current value to an existing optimal parking current value. Performing the current value evaluation further includes modifying the existing optimal parking current value to the motor current value when the motor current value exceeds or is equal to the existing optimal parking current value.
Abstract:
One or more techniques and/or systems are disclosed for increasing compressed air efficiency in a pump that utilizes an air efficiency device in order to optimize the amount of a compressed air in the pump. The air efficiency device may allow for controlling the operation of the air operated diaphragm pump by reducing the flow of compressed air supplied to the pump as the pump moves between first and second diaphragm positions. A sensor may be used to monitor velocity of the diaphragm assemblies. In turn, full position feedback is possible so that the pump self-adjusts to determine the optimum, or close to optimum, turndown point of the diaphragm assemblies. As such, air savings are achieved by minimizing the amount of required compressed air.
Abstract:
Disclosed are apparatus adapted to dispense and/or aspirate liquids, such as in a clinical analyzer. In one aspect, a multi-chamber pump apparatus is disclosed that has a pump body containing first and second chambers, a piston having a first piston portion of a first pump area A1 received in the first chamber, and a second piston portion of a second pumping area A2 received in the second chamber, and an actuator coupled to the piston. The first and second chambers can be selectively accessed to improve metering accuracy at dissimilar flow volumes from the chambers. Methods and systems including the multi-chamber pump apparatus are provided, as are other aspects.