Abstract:
A lightweight and compact super-insulation system that is also capable of supporting a high level of compressive load is described. The system utilizes spacers to provide structural support and utilize controlled buckling of a thin protective outer skin supported by spacers to form strong catenary surfaces to protect insulation material underneath. The spacers may comprise an aerogel, or an aerogel may provide insulation separate from the spacer yet contained within the thin outer skin. The system will be useful for thermal management of variety of deep underwater structures such as pipe-in-pipe apparatus, risers or subsea trees for ultra-deep water oil-and-gas exploration.
Abstract:
The present disclosure relates to materials and systems to manage thermal runaway issues in energy storage systems. Exemplary embodiments include an insulation layer that is encapsulated to form an insulation barrier. A particle capture layer is included in the insulation barrier. The particle capture layer captures particles released from the insulation barrier during compression of the insulation barrier.
Abstract:
Carbon-silicon compositions including nanofibrillar carbon networks coated with porous interconnected silicon and their manufacture and use thereof are provided. Embodiments include a composite material including a nanoporous carbon-based scaffold and a silicon-based material. The nanoporous carbon-based scaffold includes a pore structure that includes a fibrillar morphology, where the silicon-based material is contained in the pore structure. The compositions find utility in various applications, including electrical energy storage electrodes and devices comprising the same.
Abstract:
Nanoporous carbon-based scaffolds or structures, and specifically carbon aerogels and their manufacture and use thereof are provided. Embodiments include a silicon-doped anode material for a lithium-ion battery, where the anode material includes beads of a polyimide-derived carbon aerogel. The carbon aerogel may further include silicon particles and accommodates expansion of the silicon particles during lithiation. The anode material provides optimal properties for use within the lithium-ion battery.
Abstract:
Components and systems to manage thermal runaway issues in electric vehicle batteries are provided. Exemplary embodiments include a heat control member. The heat control member can include reinforced aerogel compositions that are durable and easy to handle, have favorable performance for use as heat control members and thermal barriers for batteries, have favorable insulation properties, and have favorable reaction to fire, combustion and flame-resistance properties. Also provided are methods of preparing or manufacturing such reinforced aerogel compositions. In certain embodiments, the composition has a silica-based aerogel framework reinforced with a fiber and including one or more opacifying additives.
Abstract:
Nanoporous carbon-based scaffolds or structures, and specifically carbon aerogels and their manufacture and use thereof. Embodiments include a cathode material within a lithium-air battery, where the cathode is formed of a binder-free, monolithic, polyimide-derived carbon aerogel. The carbon aerogel includes pores that improve the oxygen transport properties of electrolyte solution and improve the formation of lithium peroxide along the surface and/or within the pores of the carbon aerogel. The cathode and underlying carbon aerogel provide optimal properties for use within the lithium-air battery.
Abstract:
The present invention provides methods and systems to effectively insulate hot or cold surfaces in industrial, domestic and building systems. It provides composite thermal insulation systems, which comprises an at least two-layer thermal insulation cladding, with at least two layers each containing from 25 to 95% by weight of aerogel and from 5 to 75% by weight of inorganic fibres, wherein the layers of the thermal insulation cladding are joined to one another by means of an inorganic binder.
Abstract:
The invention provides a method for imparting curvature to a substantially planar material comprising placing substantially planar material in a smart bag, and heat shrinking the smart-bagged material, wherein curvature is imparted to the smart-bagged material upon heat-shrinkage (e.g., placing an aerogel blanket with fibrous batting in a smart bag, applying vacuum and sealing the bag, shipping the flat bagged material to a work-site, heat-shrinking the bag to impart annular geometry, and securing the bagged insulation around an oil pipeline). Methods are included for preparing a smart bag of the invention.
Abstract:
The invention provides a method for imparting curvature to a substantially planar material comprising placing substantially planar material in a smart bag, and heat shrinking the smart-bagged material, wherein curvature is imparted to the smart-bagged material upon heat-shrinkage (e.g., placing an aerogel blanket with fibrous batting in a smart bag, applying vacuum and sealing the bag, shipping the flat bagged material to a work-site, heat-shrinking the bag to impart annular geometry, and securing the bagged insulation around an oil pipeline). Methods are included for preparing a smart bag of the invention.