Abstract:
Nanoporous carbon-based scaffolds or structures, and specifically carbon aerogels and their manufacture and use thereof are provided. Embodiments include a silicon-doped anode material for a lithium-ion battery, where the anode material includes beads of a polyimide-derived carbon aerogel. The carbon aerogel may further include silicon particles and accommodates expansion of the silicon particles during lithiation. The anode material provides optimal properties for use within the lithium-ion battery.
Abstract:
The present disclosure is directed to methods of forming polyimide gels. The methods generally include forming a polyamic acid and dehydrating the polyamic acid with a dehydrating agent in the presence of water. The resulting polyimide gels may be converted to polyimide or carbon xerogels or aerogels. The methods are advantageous in providing rapid or even instantaneous gelation, which may be particularly useful in formation of beads comprising the polyimide gels. Polyimide or carbon gel materials prepared according to the disclosed method are suitable for use in environments containing electrochemical reactions, for example as an electrode material within a lithium-ion battery.
Abstract:
Nanoporous carbon-based scaffolds or structures, and specifically carbon aerogels and their manufacture and use thereof are provided. Embodiments include a silicon-doped anode material for a lithium-ion battery, where the anode material includes beads of polyimide-derived carbon aerogel. The carbon aerogel includes silicon particles and accommodates expansion of the silicon particles during lithiation. The anode material provides optimal properties for use within the lithium-ion battery.
Abstract:
The present disclosure is directed to silica-carbon composite materials including a low bulk density carbon material having a skeletal framework of carbon nanofibers, the skeletal framework forming a pore structure comprising an array of interconnected pores. The silica-carbon composite materials further include a conformal coating layer of silica on the carbon nanofibers. Further provided are methods for preparation of the silica-carbon composite materials, and methods for reduction of the silica-carbon composite materials to provide silicon-carbon composite materials.
Abstract:
The present disclosure is directed to methods of forming polyamic acid and polyimide gels in water. The resulting polyamic acid and polyimide gels may be converted to aerogels, which may further be converted to carbon aerogels. Such carbon aerogels have the same physical properties as carbon aerogels prepared from polyimide aerogels obtained according to conventional methods, i.e., organic solvent-based. The disclosed methods are advantageous in reducing or avoiding costs associated with use and disposal of potentially toxic solvents and byproducts. Gel materials prepared according to the disclosed methods are suitable for use in environments involving electrochemical reactions, for example as an electrode material within a lithium-ion battery.
Abstract:
This invention relates to methods of preparing porous gels with improved consistencies and properties by stabilizing gel precursors. It further relates to processing of precursors, sol and other ingredients for casting gels in a continuous fashion.
Abstract:
A preparation process of polyimide aerogels that composed of aromatic dianhydrides and aromatic diamines or a combined aromatic and aliphatic diamines is described. Also descried is a process to produce carbon aerogels derived from polyimide aerogel composed of a rigid aromatic diamine and an aromatic dianhydride. Finally, the processes to produce carbon aerogels or xerogel-aerogel hybrid, both of which impregnated with highly dispersed transition metal clusters, and metal carbide aerogels, deriving from the polyimide aerogels composed of a rigid aromatic diamine and an aromatic dianhydride, are described. The polyimide aerogels and the polyimide aerogel derivatives consist of interconnecting mesopores with average pore size at 10 to 30 nm and a mono-dispersed pore size distribution. The gel density could be as low as 0.008 g/cc and accessible surface area as high as1300 m 2 /g.