Abstract:
An optical coherence analysis system comprising: a first swept source that generates a first optical signal that is tuned over a first spectral scan band, a second swept source that generates a second optical signal that is tuned over a second spectral scan band, a combiner for combining the first optical signal and the second optical signal for form a combined optical signal, an interferometer for dividing the combined optical signal between a reference arm leading to a reference reflector and a sample arm leading to a sample, and a detector system for detecting an interference signal generated from the combined optical signal from the reference arm and from the sample arm. In embodiments, the swept sources are tunable lasers that have shared laser cavities.
Abstract:
An optical coherence analysis system comprising: a first swept source that generates a first optical signal that is tuned over a first spectral scan band, a second swept source that generates a second optical signal that is tuned over a second spectral scan band, a combiner for combining the first optical signal and the second optical signal for form a combined optical signal, an interferometer for dividing the combined optical signal between a reference arm leading to a reference reflector and a sample arm leading to a sample, and a detector system for detecting an interference signal generated from the combined optical signal from the reference arm and from the sample arm. In embodiments, the swept sources are tunable lasers that have shared laser cavities.
Abstract:
An OCT system and particularly its clock system generates a k-clock signal but also generates an optical frequency reference sweep signal that, for example, indicates the start of the sweep or an absolute frequency reference associated with the sweep at least for the purposes of sampling of the interference signal and/or processing of that interference signal into the OCT images. The clock system is also tunable to allow the control or flexibility over the relationship between the scanning of the swept optical signal and the sampling of the interference signal by the data acquisition system. Specifically, the absolute frequencies of the swept optical signal at which the k-clock signals are generated can be adjusted. Also, the absolute frequency of the swept optical signal at which sampling of the interference signal is initiated can also be changed or stabilized. Moreover, optical frequency sampling interval defined by the k-clock signal can be changed under user control or simply stabilized.
Abstract:
Dry oxygen, dry air, or other gases such as ozone are hermetically sealed within the package of the external cavity laser or ASE swept source to avoid packaging-induced failure or PLF. PIF due to hydrocarbon breakdown at optical interfaces with high power densities is believed to occur at the SLED and/or SOA facets as well as the tunable Fabry-Perot reflector/filter elements and/or output fiber. Because the laser is an external cavity tunable laser and the configuration of the ASE swept sources, the power output can be low while the internal power at surfaces can be high leading to PIF at output powers much lower than the 50 mW.
Abstract:
A frequency swept laser source for TEFD-OCT imaging includes an integrated clock subsystem on the optical bench with the laser source. The clock subsystem generates frequency clock signals as the optical signal is tuned over the scan band. Preferably the laser source further includes a cavity extender in its optical cavity between a tunable filter and gain medium to increase an optical distance between the tunable filter and the gain medium in order to control the location of laser intensity pattern noise. The laser also includes a fiber stub that allows for control over the cavity length while also controlling birefringence in the cavity.
Abstract:
A process for tunable filter train alignment comprises detecting a spectral response of the filter train and aligning an optical fiber that transmits an input optical signal to the filter train during operation. Further, the tunable filter is moved relative to the filter train in response to a spectral response of the filter train. As a result, the alignment and spectral response of the tunable filter train are optimized. In the preferred embodiment, the alignment and SMSR optimization occur simultaneously with respect to each other.
Abstract:
A technique for fabricating the required surface shapes for micro optical elements, such as curved micro mirrors and lenses, starts with a simple, binary for example, approximation to the desired surface shape. Then polishing, e.g., chemical mechanical polishing (CMP), is used to form the smooth optical surface. Specifically, starting with a mesa or blind hole, with a mesa profile, a smooth mirror or lens structure is fabricated.
Abstract:
A process for configuring a tunable MOEMS filter train comprises determining a spectral response of a MOEMS tunable filter. A spectral separation between different order modes, or free spectral range, is then determined for the filter. This information is then related to a mode size of a desired mode of the tunable filter. With this information, lenses for the optical train are provisioned, and then installed so that light is launched into the optical filter at the desired mode size to thereby maximize the SMSR of the filter train.
Abstract:
A zipper actuator for optical beam control has an optical port formed through the substrate. The cantilevered beam of the actuator preferably includes a paddle for switching the optical signal. Mirror structures can be provided on the paddle for beam switching. In some embodiments, MEMS or electrode latches are further provided.
Abstract:
In a MOEMS device and corresponding fabrication process, absorbing material along the optical axis of the device is removed. The result is a suspended optical coating, such as a dielectric thin film mirror stack. Such optical coatings can have very low absorption. Thus, the invention can materially lower the net absorption in the device, and thereby improve performance, by degrading power related dependencies.