Abstract:
The present invention relates to a method, an apparatus and a nanopore for optical recognition of molecules, wherein said method comprises a step wherein a molecule (4) to be recognized passes through a nanopore (1), and is characterized in that the nanopore (1) comprises at least one flexible element (10) configured substantially as an appendix or the like, extending within the nanopore (1), and wherein the recognition step is effected in relation to the displacement and/or deformation of the flexible element (10) induced by the passage of the molecule (4).
Abstract:
La présente invention concerne un procédé de concentration d'au moins un analyte (11) comprenant les étapes suivantes : préparation d'une première phase (1) comprenant au moins un analyte (11); dépôt d'une goutte de ladite première phase (1) sur un substrat (2); dépôt sur ladite goutte de première phase (1) d'une goutte d'une seconde phase (4) liquide comprenant au moins un tensioactif (41), ladite seconde phase (4) étant non miscible avec ladite première phase (1); évaporation de la goutte de la seconde phase (4); et évaporation de la goutte de la première phase (1). La présente invention concerne également un procédé de détection d'au moins un analyte (11) mettant en œuvre ledit procédé de concentration; et un système mettant en œuvre ledit procédé de détection.
Abstract:
Disclosed herein are stacked channel structures for metal oxide semiconductor field effect transistors (MOSFETs) and related circuit elements, computing devices, and methods. For example, a stacked channel structure may include: a semiconductor substrate having a substrate lattice constant; a fin extending away from the semiconductor substrate, the fin having an upper region and a lower region; a first transistor in the lower region, wherein the first transistor has a first channel, the first channel has a first lattice constant, and the first lattice constant is different from the substrate lattice constant; and a second transistor in the upper region, wherein the second transistor has a second channel, the second channel has a second lattice constant, and the second lattice constant is different from the substrate lattice constant.
Abstract:
Embodiments of the present disclosure provide techniques and configurations associated with conversion of thin transistor elements from silicon (Si) to silicon germanium (SiGe). In one embodiment, a method includes providing a semiconductor substrate having a channel body of a transistor device disposed on the semiconductor substrate, the channel body comprising silicon, forming a cladding layer comprising germanium on the channel body, and annealing the channel body to cause the germanium to diffuse into the channel body. Other embodiments may be described and/or claimed.
Abstract:
Techniques are disclosed for incorporating high mobility strained channels into fin-based transistors (e.g., FinFETs such as double-gate, trigate, etc), wherein a stress material is cladded onto the channel area of the fin. In one example embodiment, silicon germanium (SiGe) is cladded onto silicon fins to provide a desired stress, although other fin and cladding materials can be used. The techniques are compatible with typical process flows, and the cladding deposition can occur at a plurality of locations within the process flow. In some cases, the built-in stress from the cladding layer may be enhanced with a source/drain stressor that compresses both the fin and cladding layers in the channel. In some cases, an optional capping layer can be provided to improve the gate dielectric / semiconductor interface. In one such embodiment, silicon is provided over a SiGe cladding layer to improve the gate dielectric / semiconductor interface.
Abstract:
A method may be provided to operate a node of a radio access network communicating with a wireless terminal. The wireless terminal may be configured to provide a transmit buffer for data to be transmitted to the node during transmission time intervals, to transmit packets of the data from the transmit buffer to the node during respective transmission time intervals, and to provide buffer indicator bits with respective packets of the data during the respective transmission time intervals. The method may include: receiving a packet including data and a buffer indicator bit from the wireless terminal during a respective transmission time interval; and providing an estimate of a quantity of data in the transmit buffer at the wireless terminal responsive to a status of the buffer indicator bit. Related wireless terminals and network nodes are also discussed.
Abstract:
Uniaxially strained nanowire structures are described. For example, a semiconductor device includes a plurality of vertically stacked uniaxially strained nanowires disposed above a substrate. Each of the uniaxially strained nanowires includes a discrete channel region disposed in the uniaxially strained nanowire. The discrete channel region has a current flow direction along the direction of the uniaxial strain. Source and drain regions are disposed in the nanowire, on either side of the discrete channel region. A gate electrode stack completely surrounds the discrete channel regions.
Abstract:
Nanowire structures having wrap-around contacts are described. For example, a nanowire semiconductor device includes a nanowire disposed above a substrate. A channel region is disposed in the nanowire. The channel region has a length and a perimeter orthogonal to the length. A gate electrode stack surrounds the entire perimeter of the channel region. A pair of source and drain regions is disposed in the nanowire, on either side of the channel region. Each of the source and drain regions has a perimeter orthogonal to the length of the channel region. A first contact completely surrounds the perimeter of the source region. A second contact completely surrounds the perimeter of the drain region.
Abstract:
A detector-readout interface for an avalanche particle detector comprises a resistive layer formed at a bottom side of a gas chamber and a dielectric layer formed under said resistive layer and is adapted for capacitive coupling to an external readout board. This provides a modular detector configuration in which the readout card and detector core can be combined freely and interchangeably. The readout board can even be removed or replaced without switching off the detector. At the same time, the configuration provides an effective protection against sparks and discharges, and in particular obliviates the need for additional protecting circuits. The configuration may be employed in any avalanche particle detector, such as the MicroMegas or GEM detectors.
Abstract:
Methods of forming microelectronic structures are described. Embodiments of those methods include forming a nanowire device comprising a substrate comprising source/drain structures adjacent to spacers, and nanowire channel structures disposed between the spacers, wherein the nanowire channel structures are vertically stacked above each other.