Abstract:
A robotic system that is used in a tele-presence session. For example, the system can be used by medical personnel to examine, diagnose and prescribe medical treatment in the session. The system includes a robot that has a camera and is controlled by a remote station. The system further includes a storage device that stores session content data regarding the session. The data may include a video/audio taping of the session by the robot. The session content data may also include time stamps that allow a user to determine the times that events occurred during the session. The session content data may be stored on a server that accessible by multiple users. Billing information may be automatically generated using the session content data.
Abstract:
A remote controlled robot system that includes a mobile robot with a robot camera and a battery plug module, and a remote control station that transmits commands to control the mobile robot. The system also includes a battery charging module that mates with the mobile robot battery plug module, and an alignment system that aligns the battery plug module with the battery charging module. The battery modules may also be aligned with the aid of video images of the battery charging module provided to the remote station by a camera located within the battery plug module.
Abstract:
A robot system (10) that includes a robot (12) and a remote station (16). The remote station (16) may be a personal computer (22) coupled to the robot through a broadband network (18). A user at the remote station (16) may receive both video and audio from a camera (26) and a microphone (28) of the robot (12), respectively. The remote station (16) may include a visual display that displays both a first screen field and a second screen field. The first screen field may display a video image provided by a robot camera (26). The second screen field may display information such as patient records. The information from the second screen field may be moved to the first screen field and also transmitted to the robot (12) for display by a robot monitor (24). The user at the remote station (16) may annotate the information displayed by the robot monitor (24) to provide a more active video-conferencing experience.
Abstract:
A remote controlled robot system that includes a mobile robot and a remote control station. The mobile robot includes a camera that captures an image. The remote control station may include a monitor that displays the image captured by the robot camera. A projector is coupled to the remote control station to project the image. The system allows for the projection of the image captured by the robot to a relatively large viewing audience. The audience can thus view images provided by a moving robot.
Abstract:
Disclosed herein are various embodiments of systems and methods for visualizing, analyzing, and managing telepresence devices operating in a telepresence network of healthcare facilities. A user may selectively view a global view (110) of all telepresence devices (111), telepresence devices (322) within a particular region (320), the details (920) of a particular telepresence device, and/or the details of a particular healthcare facility (1100). At one viewing level (1200), a user may view a plan view map (1260) of a healthcare facility and visualize the navigational history (1230, 1240) of a telepresence device (1310). At another viewing level, a user may view a plan view map (1360) of a healthcare facility and visualize telemetry data (1350) of a patient associated with a selected room (1340). At another viewing level (1700), a user may selectively view various graphical representations (1720) of telepresence device statistics and usage information (1740) with respect to health ratings for each of a plurality of patients.
Abstract:
A telepresence robot may include a drive system, a control system, an imaging system, and a mapping module. The mapping module may access a plan view map of an area and tags associated with the area. In various embodiments, each tag may include tag coordinates and tag information, which may include a tag annotation. A tag identification system may identify tags within a predetermined range of the current position and the control system may execute an action based on an identified tag whose tag information comprises a telepresence robot action modifier. The telepresence robot may rotate an upper portion independent from a lower portion. A remote terminal may allow an operator to control the telepresence robot using any combination of control methods, including by selecting a destination in a live video feed, by selecting a destination on a plan view map, or by using a joystick or other peripheral device.
Abstract:
Disclosed herein are various embodiments of the systems and methods for management of information among various medical providers and/or facilities. According to various embodiments, the systems and methods disclosed herein may facilitate the completion of location specific forms in a variety of formats by medical professionals. Certain embodiments may be employed by remotely located medical professional utilizing telemedicine technologies. Such systems may provide medical professionals utilizing telemedicine technologies with a consistent interface for gathering and inputting patient information, while continuing to allow for the use of a wide variety of forms by different medical providers and facilities. In addition to facilitating the use of location-specific forms, the systems and methods for management of information disclosed herein may also be used for the collection of patient care metrics.
Abstract:
A tele-presence system that includes a cart. The cart includes a robot face that has a robot monitor, a robot camera, a robot speaker, a robot microphone, and an overhead camera. The system also includes a remote station that is coupled to the robot face and the overhead camera. The remote station includes a station monitor, a station camera, a station speaker and a station microphone. The remote station can display video images captured by the robot camera and/or overhead camera. By way of example, the cart can be used in an operating room, wherein the overhead camera can be placed in a sterile field and the robot face can be used in a non-sterile field. The user at the remote station can conduct a teleconference through the robot face and also obtain a view of a medical procedure through the overhead camera.
Abstract:
A robot system with a robot that has a camera, a monitor, a microphone and a speaker. A communication link can be established with the robot through a cellular phone. The link may include an audio only communication. Alternatively, the link may include audio and video communication between the cellular phone and the robot. The phone can transmit its resolution to the robot and cause the robot to transmit captured images at the phone resolution. The user can cause the robot to move through input on the cellular phone. For example, the phone may include an accelerometer that senses movement, and movement commands are then sent to the robot to cause a corresponding robot movement. The phone may have a touch screen that can be manipulated by the user to cause robot movement and/or camera zoom.
Abstract:
A robot system that includes a robot face with a monitor, a camera, a speaker and a microphone. The system may include a removable handle attached to the robot face. The robot face may be controlled through a remote controller. The handle can be remove and replaced with another handle. The remote controller can be covered with a sterile drape or sterilized after each use of the system. The handle and remote controller allow the robot to be utilized in a clean environment such as an operating room without requiring the robot face to be sterilized after a medical procedure. The robot face can be attached to a boom with active joints. The robot face may include a user interface that allows a user to individually move the active joints of the boom.