Abstract:
The disclosure describes an apparatus and method for automatic gain control during scanning. The apparatus comprises an optical detector (206) to receive an optical signal reflected from a symbol (214) positioned within a scan window (215) by an optical beam (212) scanned from a leading edge (218) of the scan window (215) to a trailing edge (220) of the scan window; and a processor coupled (208) to the optical detector to adjust the gain of the optical detector during the beam scan. The process comprises receiving an optical signal using an optical detector (206), wherein the optical signal comprises optical energy reflected from a symbol positioned in a scan window as an optical beam scans from a leading edge of the scan window to a trailing edge of the scan window, and adjusting the gain of the optical detector during receipt of the optical signal. A calibration process is disclosed comprising calibrating the optical detector to obtain a plurality of gain corrections, each gain correction corresponding to a different position between a leading edge and a trailing edge of a scan window, and storing the plurality of gain corrections.
Abstract:
According to embodiments of the present invention, a barcode scanner platform is provided in which the gain of an analog signal representative of a barcode is controlled using a control loop. In embodiments, an MTF detector generates a value (e.g., DC) representative of a low frequency portion (wide or out of optical focus elements) of the analog signal and a second value (e.g., DC) representative of a high frequency portion (narrow elements or in optical focus elements) of the analog signal. The processor uses the first and the second values and a reference amplitude to determine a gain IE signal. The processor provides the gain signal to an AGC circuit that provides a linear response to the gain signal using matched JFETs. A noise filter can be enabled or disabled based on the first value, the second value, and/or the barcode scanner platform read rate.
Abstract:
A process comprising computing a histogram of pixel intensity data collected from a digital image of an optically readable symbol including light and dark elements, thresholding the histogram to classify individual pixels as light pixels, dark pixels or gray pixels, thresholding only the portion of the histogram corresponding to gray pixels to re-classify the gray pixels into dark pixels, light pixels or unresolved gray pixels, and heuristically analyzing each string of unresolved gray pixels to determine the elements of the optically readable symbol that created the string of unresolved gray pixels. An apparatus and system to implement the process.
Abstract:
The disclosure describes an apparatus and method for automatic gain control during scanning. The apparatus comprises an optical detector (206) to receive an optical signal reflected from a symbol (214) positioned within a scan window (215) by an optical beam (212) scanned from a leading edge (218) of the scan window (215) to a trailing edge (220) of the scan window; and a processor coupled (208) to the optical detector to adjust the gain of the optical detector during the beam scan. The process comprises receiving an optical signal using an optical detector (206), wherein the optical signal comprises optical energy reflected from a symbol positioned in a scan window as an optical beam scans from a leading edge of the scan window to a trailing edge of the scan window, and adjusting the gain of the optical detector during receipt of the optical signal. A calibration process is disclosed comprising calibrating the optical detector to obtain a plurality of gain corrections, each gain correction corresponding to a different position between a leading edge and a trailing edge of a scan window, and storing the plurality of gain corrections.
Abstract:
An apparatus (10) is disclosed comprising a base capable of receiving a camera including a lens, and a projector coupled to the base and adapted to project a plurality of beams of light 12, 14) onto a plane positioned at a focus distance from the base, wherein the projections of the beams of light on the plane are geometric shapes (16, 18), and wherein an intersection of the geometric shapes is at the center of the field of view of the lens when the lens is installed on the base. In addition, an apparatus is disclosed comprising a base capable of receiving a camera including a lens, an image processor capable of being coupled to the camera for processing an image of a target captured by the camera, and a confirmation projector coupled to the image processor, wherein the projector projects a confirmation beam onto the plane of the target when the image processor signals the confirmation projector that it has processed the image.
Abstract:
The present application discloses a micro-opto-electromechanical apparatus comprising a silicon wafer comprising a plurality of layers, a reflector formed in one of the plurality of layers, and a pattern on the reflector to focus or collimate an incident beam of radiation into a reflected beam.
Abstract:
The present invention provides a micromechanical or microoptomechanical structure. The structure is produced by a process comprising defining a structure on a single crystal silicon layer separated by an insulator layer from a substrate layer; depositing and etching a polysilicon layer on the single crystal silicon layer, with remaining polysilcon forming mechanical or optical elements of the structure; exposing a selected area of the single crystal silicon layer; and releasing the formed structure.