Abstract:
A microspot deposition system (12) featuring a hollow cylindrical wall (26) extending from a closed end (28), terminating in an open end (30) and including a longitudinal gap (34) extending from the open end (30) toward the closed end (28) to allow the rapid exhaustion of the atmosphere and efficient cleaning within the cylindrical wall (26). The cylindrical wall (26) defines a lumen (32) with both the lumen (32) and the gap (34) adapted to facilitate capillary action of liquid in fluid communication therewith to form a meniscus (46) proximate to the open end (30). To facilitate deposition of liquid contained within the lumen (32), the gap (34) may be tapered so that it is narrowest proximate to the open end (30). The narrowed portion of the gap (34) results in a meniscus (46) having a reduced area to ensure preferential fluid flow toward the open end (30), which facilitates deposition via capillary action between the liquid in the lumen (32) and a working surface (52).
Abstract:
A capillary electrophoresis separation matrix for single-stranded nucleic acids, along with methods for using and preparing the matrix, are disclosed. The separation matrix provides denaturing conditions and contains hydroxyethyl cellulose (HEC) in combination with urea, and preferably also includes formamide. The separation matrix may be used for DNA sizing and sequencing applications and provides a single-base resolution to approximately 500 base pairs. In the figure, line (10) represents peak spacing and line (20) representa peak width of the HEC/urea/formamide separation matrix. Line (15) and line (25) represent the peak spacing and peak width, respectively, of the prior art matrix. The separation matrix is inexpensive, easy to prepare, requires no polymerization steps, and is of low enough viscosity to be pumped easily into and out of capillary tubes for electrophoresis. The low viscosity allows for high throughput of samples and reuse of the capillary tubes for numerous separations.
Abstract:
An LED point imaging scanner for stimulating and reading fluorescent and reflective signal radiation from a target sample (10) is disclosed. LED light source (12) is mounted on scan head (20) and focused into pinhole aperture (15) of spatial filter (30), then collimated and focused to a spot (17) on sample (10). The spatial filter, or an optical fiber equivalent, effectively restricts the incoherent LED light and creates a point light source. Signal radiation from sample (10) is collected through scan head (20) and the returning light beam is collimated and focused onto detection means (40). A spatial filter (22) in the path of the returning beam may also be utilized. Detection means (40) is either a small detector directly mounted onto the scan head, or an end of an optical fiber which transmits the point image to a remotely-positioned stationary detector. The scan head is moved along one or two axes relative to the sample.
Abstract:
A method of processing a SPECT image of a region of interest is disclosed. The SPECT image was obtained using at least one gamma detector detecting gamma radiation from the region of interest at multiple detector configurations, and the method includes: obtaining data indicative of the detector configurations and their spatial relationships to the region of interest; determining a resolution level for each of a plurality of directions in each point in the image based on the data obtained; and processing the image based on the resolution levels determined.
Abstract:
The disclosure describes methods and apparatuses for scanning a region of interest (ROI) by a gamma detector. An exemplary method includes determining, for each of multiple detector configurations, a respective weight based on an absorption profile, associating each of a plurality of portions of the ROI with a respective gamma attenuation value; and detecting gamma radiation from multiple detector configurations for time periods allocated among the detector configurations based on the weights determined.
Abstract:
A microfabricated capillary array electrophoresis chip includes a planar substrate having a first major surface defining converging first and second elongate separation channels. Each separation channel extends between an associated cathode port and anode port defined by the first major surface. The substrate further comprises a first perimetrical edge segment extending substantially along the first separation channel, and a second perimetrical edge segment extending substantially along the second separation channel. The perimetrical edge segments of a pair of chips of the present invention are cooperatively engageable so as to provide an electrophoresis separation plate having pseudoradially-aligned separation channels.
Abstract:
Methods for preparing nanoscale reactions using nucleic acids are presented. Nucleic acids are captured saturably, yet reversibly, on the internal surface of the reaction chamber, typically a capillary. Excess nucleic acid is removed and the reaction is performed directly within the capillary. Alternatively, the saturably bound nucleic acid is eluted, dispensing a metered amount of nucleic acid for subsequent reaction in a separate chamber. Devices for effecting the methods of the invention and a system designed advantageously to utilize the methods for high throughput nucleic acid sequencing reactions are also provided.
Abstract:
A single exon nucleic acid microarray comprising a plurality of single exon nucleic acid probes for measuring gene expression in a sample derived from human HBL 100 cells is described. Also described are single exon nucleic acid probes expressed in the HBL 100 cells and their use in methods for detecting gene expression.
Abstract:
The present invention features two flat-field, telecentric, infinite conjugate, achromatic objectives (32 and 34) each of which has an external pupil lying in a common plane located equidistant from the two objectives, defining a mechanically accessible central pupil (30) of an imaging system centered in the common plane (28). Each of the objectives is afocal in the common plane, with one of the lenses forming a focal plane proximate to a sample. The lenses are adapted to provide varying levels of magnification while keeping constant the number of resolvable points in the field of view. An array detector (14) is positioned proximate to a focal plane formed of the remaining objective lens (34). The double objective lens assembly is described as being included in transillumination and epi-illumination systems.
Abstract:
A self-aligning mechanism for positioning analyte receptacles (108) comprises a loading carriage (200) which bears a tray (244). In one embodiment, the carriage (200) is slidingly mounted in a structure (202) and includes three guide pins (222, 224, 226) and a stop pin (238). In this embodiment, the tray (244) has a leaf spring (280) attached at the rear thereof, a lateral protuberance for contacting the structure (202), and two frontal and one lateral oblique slots (252, 254, 258). A pair of vertical contact planes (272, 274), orthogonally disposed with respect to each other, are formed on the top surface of the tray (244).