Abstract:
Techniques for handling multicast over link aggregated (LAG) interfaces and integrated routing and bridging (IRB) interfaces in a network device are described in which interfaces, at which a data unit is to be transmitted, may be represented hierarchically in which the LAG interfaces and IRB interfaces are represented as pointers. In one implementation, a device may determine routes for data units, where a route for a multicast data unit is represented as a set of interfaces of the device at which the data unit is to be output. Entries in the set of interfaces may include physical interfaces of the device and pointers to LAG interfaces or pointers to the IRB interfaces. The device may generate tokens to represent routes for data units and resolve the pointers to the LAG interfaces or the IRB interfaces to obtain physical interfaces of the router corresponding to a LAG or an IRB.
Abstract:
A three light level electronic ballast, and methods of operating lamps at three light levels, are provided. The ballast includes a rectifier, a power factor correction circuit, an inverter circuit, a first circuit, a second circuit, and a control circuit. The rectifier receives an AC voltage signal and produces a rectified voltage signal, which the power factor correction circuit receives and uses to provide a corrected voltage signal. The inverter circuit receives the corrected voltage signal and provides an energizing signal to power at least two lamps. The first circuit selectively reduces the current applied to the lamps by the energizing signal. The second circuit selectively prevents the second lamp from being energized by the energizing signal. The control circuit controls the first circuit and the second circuit.
Abstract:
A electrodeless lamp including a fluorescent discharge vessel, a tip, an amalgam, a lamp core, and a heater. The vessel contains a gas having a partial vapor pressure and a fluorescent material. The tip has an inner end engaging the vessel, and an opening in communication with the gas. The amalgam is positioned within the opening, in heat transfer relation with the tip. When the temperature of the amalgam decreases, mercury vapor in the gas condensates onto the amalgam, causing a decrease in the partial vapor pressure of the gas. The opposite occurs when the amalgam temperature increases. The lamp core generates a magnetic flux, causing an electrical discharge in the gas. The heater includes a positive temperature coefficient connected to a winding of the lamp core. The heater is in heat transfer relation with the tip and heats the tip when the electrodeless lamp is in a dimming mode.
Abstract:
A route for a data unit through a network may be defined based on a number of next hops. Exemplary embodiments described herein may implement a router forwarding table as a chained list of references to next hops. In one implementation, a device includes a forwarding table that includes: a first table configured to store, for each of a plurality of routes for data units in a network, a chain of links to next hops for the routes; and a second table configured to store the next hops. The device also includes a forwarding engine configured to assemble the next hops for the data units based on using the chain of links in the first table to retrieve the next hops in the second table and to forward the data units in the network based on the assembled next hops.
Abstract:
Embodiments of the current invention include methods of improving a process of forming a textured TCO film by combinatorial methods. The combinatorial method may include depositing a TCO by physical vapor deposition or sputtering, annealing the TCO, and etching the TCO where at least one of the depositing, the annealing, or the etching is performed combinatorially. Embodiments of the current invention also include improved methods of forming the TCO based on the results of combinatorial testing.
Abstract:
A ballast for dimming a lamp is provided. The ballast includes an inverter circuit for providing a lamp current for energizing the lamp and a dim interface for receiving an input indicative of a selected lighting level. A control circuit is connected to the dim interface for generating a pulse-width-modulated signal having a duty cycle corresponding to the selected lighting level. A switching network is connected to the control circuit for receiving the pulse-width-modulated signal. The switching network operates between a conductive state and a non-conductive state as a function of the pulse-width-modulated signal. An impedance device is connected across the switching network and is configured for connecting in series with the lamp so that the impedance device receives the lamp current when the switching network is operating in the non-conductive state and the lamp current bypasses the capacitor when the switching network is operating in the conductive state.
Abstract:
Surface texturing of the transparent conductive oxide (TCO) front contact of a thin film photovoltaic (TFPV) solar cell is needed to enhance the light-trapping capability of the TFPV solar cells and thus improving the solar cell efficiency. Embodiments of the current invention describe chemical formulations and methods for the wet etching of the TCO. The formulations and methods may be optimized to tune the surface texturing of the TCO as desired.
Abstract:
Embodiments of the current invention describe methods of forming different types of crystalline silicon based solar cells that can be combinatorially varied and evaluated. Examples of these different types of solar cells include front and back contact silicon based solar cells, all-back contact solar cells and selective emitter solar cells. These methodologies all incorporate the formation of site-isolated regions using a combinatorial processing tool and the use of these site-isolated regions to form the solar cell area. Therefore, multiple solar cells may be rapidly formed on a single crystalline silicon substrate for use in combinatorial methodologies. Any of the individual processes of the methods described may be varied combinatorially to test varied process conditions or materials.
Abstract:
Methods for substrate processing are described. The methods include forming a material layer on a substrate. The methods include selecting constituents of a molecular masking layer (MML) to remove an effect of variations in the material layer as a result of substrate processing. The methods include normalizing the surface characteristics of the material layer by selectively depositing the MML on the material layer.
Abstract:
Technologies are described herein for performing targeted, black-box fuzzing of input data for application testing. A dataflow tracing module traces an application while it reads and processes a set of template data to produce operation mapping data that maps data locations in the template data to operations performed by the application in processing the data at the location. The tracing is performed without requiring the application source code, knowledge of the syntactical structure of the input data, or specially instrumented binaries for the application. A fuzzing module is then utilized to target a specific operation or operations in the application by fuzzing data locations within the template data according to the operation mapping data until the desired outcome is achieved.