Abstract:
A signal generator consistent with certain embodiments of the invention has a reference clock (34) producing a periodic sequence of reference clock output pulses. A window generator (38) generates a plurality of time windows through which a selected plurality of the reference clock output pulses are selectively passed as windowed pulses so that the windowed pulses form a selected pattern of pulses. A programmable delay (46) has resolution of delay that has finer time granularity in delay than the period of the clock output pulses. The programmable delay (46) delays each of the windowed pulses by a programmed delay time to thereby provide a timing correction to the windowed pulses to produce an output pattern of pulses.
Abstract:
A programmable skew clock signal generator has a frequency generator circuit (104) consistent with the invention produces an output signal F ϕ0 from a reference signal F ref A frequency accumulator (132, 152) is preloaded with a preload value P K1 and receives one reference signal cycle as a clock signal, receives a constant K 1 as an input thereto, with the frequency accumulator (132, 152) having a maximum count K MAX and producing an overflow output. A phase accumulator (136, 156) is preloaded with a preload value P C1 and receives one overflow cycle output from the frequency accumulator (132, 152) as a clock signal and receives a phase offset constant C 1 as an input thereto. The phase accumulator (136, 156) has a maximum count C MAX and produces a phase accumulator (136, 156) output. A delay line (320) is clocked by the reference signal F ref and produces a plurality of delayed reference clock signals at a plurality of tap outputs. A tap selecting circuit (140, 144; 160, 164) receives the phase accumulator output and selects at least one of the tap outputs in response thereto to produce an output F ϕ1 whose phase shift ϕ1 relative to F 0ϕ is a function of P K1 and P C1 .
Abstract:
A frequency generator (100) takes a signal source (clock or carrier) (101) and generates a edge encoded direct digital modulated differential output signal (110). The differential signal (110) is applied to a frequency extension quadrature generator (FEQG) (112). The FEQG (112) includes a fractional differential wavelength delay locked loop (DLL) (280) and a frequency multiplier (240). The DLL(280) generates a control voltage (214) with which to control delays of the edge encoded modulation signal (110). A frequency extended quadrature function is applied to the periodic steady state input signal with edge encoded modulation (110), to provide the output signal set 113.
Abstract:
An apparatus and method for eliminating unwanted signal power dissipation in balanced amplifier circuits and for prohibiting unwanted signal power from appearing at the balanced amplifier load is presented. Load impedances to the amplifier power output transistors are maintained very low at unwanted frequencies, and are at an operational impedance level at the fundamental frequency. An impedance network control concept is presented, which may be either manually or automatically implemented.
Abstract:
A system and method for clock data recovery for programming direct digital synthesizers is disclosed. A counter (410) is used to calculate a coarse measurement of the clock frequency of a received digital signal (102), and a tap delay line (606) is used to calculate a fine measurement of the clock frequency of the received digital signal. The coarse and fine measurements are used to calculate a value for programming a direct digital synthesizer to produce a clock signal that is an approximate replica of the clock frequency of the received digital signal (102).
Abstract:
A system and a method for providing an input to a distributed power amplifying system are provided. In an embodiment, a distributed power amplifying system includes a plurality of amplifying sections (102, 104, 106, and 108) and a plurality of drivers (110, 112, 114, and 116). Each of the plurality of drivers receives a common transmit signal (118) and an individual control signal (120, 122, 124, and 126). Each of the plurality of drivers independently preconditions the common transmit signal, to provide a transmit output signal (128, 130, 132, and 134) to each of the plurality of amplifying sections. The common transmit signal provided to each of the plurality of drivers is preconditioned, based on the individual control signal.
Abstract:
A vector signal processor (80) can include a digital to time converter (DTC), an RF memory (RFM) or an electronically tunable transmission line (ETTL) (82), a mixer, or other phase shifter (70) for receiving an output of the DTC or the ETTL, and a controller for selectively controlling the harmonic processing of the DTC, RFM or the ETTL and the phase processing of the mixer. The vector signal processor can uncouple a relative phase of a fundamental signal with respect to harmonics of the fundamental signal. The vector signal processor uses selective phase processing of the fundamental signal and related harmonic components. In a specific embodiment, the vector signal processor cancels harmonics of the fundamental signal and more specifically can cancel a third harmonic of the fundamental signal.
Abstract:
A system and a method for providing an input to a distributed power amplifying system are provided. In an embodiment, a distributed power amplifying system includes a plurality of amplifying sections (102, 104, 106, and 108) and a plurality of drivers (110, 112, 114, and 116). Each of the plurality of drivers receives a common transmit signal (118) and an individual control signal (120, 122, 124, and 126). Each of the plurality of drivers independently preconditions the common transmit signal, to provide a transmit output signal (128, 130, 132, and 134) to each of the plurality of amplifying sections. The common transmit signal provided to each of the plurality of drivers is preconditioned, based on the individual control signal.
Abstract:
A configurable circuit consistent with certain embodiments has a variable length delay line (10), the delay line (10) having an input (24) and having N delay elements (12, 14, 16, 18, , 20) to provide a plurality of N delayed outputs (T(0) through T(N)). The variable length delay line (10) also has a number of active delay elements determined by a program command. A configurable processing array (32) receives the delayed outputs from the active delay elements and secondary data (38). The configurable processing array has an array of configurable circuit elements (104, 130, 150). The configurable processing array is configured to process the delayed outputs and the secondary data (38) in a manner for which the invention is to be used. This abstract is not to be considered limiting, since other embodiments may deviate from the features described in this abstract.
Abstract:
A DPC (300) includes: a frequency source (310) for generating a clock signal; a delay line (320) for receiving the clock signal and generating phase-shifted clock signals at output taps; a digital control device (330) for generating a control signal; and a windowing and selection circuit for generating the output signal, that includes sequential logic devices (500, 510, 520) and a combining network. A method for use in a DPC includes: receiving (400) a control signal based on a desired output signal that identifies a first output tap on the delay line; based on the control signal, selecting (410) at least two output taps on the delay line for receiving at least two different phase-shifted clock signals; and generating (420) an output signal based on the control signal and the received phase-shifted clock signals that is substantially the desired output signal.