Abstract:
An apparatus for measuring characteristics of earth formations surrounding a borehole, comprises a resistivity measurement device having a multiplicity of antennae spaced between each other in a longitudinal direction of the apparatus. A neutron measurement device of the apparatus comprises at least a neutron source and at least a neutron detector, each of the neutron detectors being at a distance from the neutron source in the longitudinal direction of the apparatus. The multiplicity of antennae are interleaved with the neutron measurement device in order to reduce a total length of the apparatus and in order to allow a determined area of the earth formation to be measured simultaneously using the neutron measurement device and the resistivity measurement device.
Abstract:
A well-logging tool may include a sonde housing and a radiation generator carried by the sonde housing. The radiation generator may include a generator housing, a target carried by the generator housing, a charged particle source carried by the generator housing to direct charged particles at the target, and at least one voltage source coupled to the charged particle source. The at least one voltage source may include a voltage ladder comprising a plurality of voltage multiplication stages coupled in a uni-polar configuration, and at least one loading coil coupled at at least one intermediate position along the voltage ladder. The well-logging tool may further include at least one radiation detector carried by the sonde housing.
Abstract:
A scintillator type radiation detector package is provided including a scintillation crystal directly coupled to the window of a photomultiplier. A scintillator package is also provided having a longer life at wellbore temperature with minimal deterioration of a hygroscopic scintillation crystal(s). Direct optical coupling of the scintillator to the photomultiplier reduces the amount of light lost at coupling interfaces and improved detection resolution over the conventional structures having separate packages for crystal and photomultiplier.
Abstract:
A method of formation evaluation using a pulsed neutron tool. The approach removes the effect of formation hydrogen index (HI) from the nuclear response of the tool. It can be used for gas detection and quantification, as well as for other fluids. It can also be used to improve a formation hydrogen index (HI) measurement.
Abstract:
Logging-while-drilling tools incorporating an electronic radiation generator, such as an electronic X-ray generator, and a method for using the same are provided. One example of such a logging-while-drilling tool may include a circumferential drill collar, a chassis disposed radially interior to the drill collar, and an electronic X-ray generator and an X-ray detector disposed within the chassis. The electronic X-ray generator may emit X-rays out of the logging-while-drilling tool into a subterranean formation. The X-ray detector may detect X-rays that return to the logging-while-drilling tool after scattering in the subterranean formation, which may be used to determine a density and/or a lithology of the subterranean formation.
Abstract:
A method is provided to detect neutrons using a boron- shielded gamma-ray detector, which will detect the 0.48-MeV prompt gamma ray due to the 10 B (n,α) 7 Li reaction. The gamma ray detector can be a proportional gas counter, a scintillation based detector, or a semiconductor detector. Monoenergetic prompt gammas will produce a sharp peak in the pulse height spectrum of a gamma-ray spectroscopy detector. By surrounding a gamma detector with a layer containing 10 B, we can measure the gamma signal and neutron signal at the same time and at the same physical location in an instrument. The approach can be used to measure neutron porosity simultaneous with gamma-ray counting or spectroscopy at the same location as long as the.48-keV gamma- ray from the neutron reaction does not interfere with the gamma-ray measurement.
Abstract:
Methods and related systems are described for the detection of nuclear radiation. The system can include a tool body adapted to be deployed in a wellbore and a scintillator material that intrinsically generates radiation. The scintillator material is mounted within the tool body. A photodetection system is coupled to the scintillator material, and mounted within the tool body. Features in a spectrum associated with a scintillation material's intrinsic radioactive decay are used for the determination of one or more parameter's of the response function of the radiation detector system.
Abstract:
The invention provides a hermetically sealed scintillation crystal package with a window made of a ruggedized material such as ALON (aluminum Oxynitride) or Spinel ceramic (MgAl 2 O 4 ) where the window is sealed to an external metallic housing part by a brazing or soldering process and the external housing part is welded to the housing containing the scintillation crystal.
Abstract translation:本发明提供了一种密封的闪烁晶体封装,其具有由诸如ALON(氮氧化铝)或尖晶石陶瓷(MgAl 2 O 4)等加固材料制成的窗口,其中窗口通过钎焊或焊接工艺密封到外部金属外壳部件,外部 壳体部分焊接到包含闪烁晶体的壳体。
Abstract:
Systems and methods for measuring neutron-induced activation gamma-rays in a subterranean formation are provided. In one example, a downhole tool for measuring neutron-induced activation gamma-rays may include a neutron source and a gamma-ray detector. The neutron source may emit neutrons according to a pulsing scheme that includes a delay between two pulses. The delay may be sufficient to allow substantially all neutron capture events due to the emitted neutrons to cease. The gamma-ray detector may be configured to detect activation gamma-rays produced when elements activated by the emitted neutrons decay to a non-radioactive state.
Abstract:
Systems and methods for measuring neutron-induced activation gamma-rays in a subterranean formation are provided. In one example, a downhole tool for measuring neutron-induced activation gamma-rays may include a neutron source and a gamma-ray detector. The neutron source may emit neutrons according to a pulsing scheme that includes a delay between two pulses. The delay may be sufficient to allow substantially all neutron capture events due to the emitted neutrons to cease. The gamma-ray detector may be configured to detect activation gamma-rays produced when elements activated by the emitted neutrons decay to a non-radioactive state.