Abstract:
A system for typing biological cells includes a tunable Fabry-Perot etalon, and imaging sensor, and a processor. The imaging sensor acquires one or more images of one or more biological cells from light transmitted through the tunable Fabry-Perot etalon. Each image represents signal associated with one or more wavelengths transmitted through the tunable Fabry-Perot etalon. The processor is configured to determine a type of each of the one or more biological cells. Determining the type uses a machine learning algorithm and is based at least in part on one or more of an image segmentation, a patch extraction, a feature extraction, a feature compression, a deep feature extraction, a feature fusion, a feature classification, and a prediction map reconstruction.
Abstract:
A system for depositing tags in an array includes a substrate holder, a tag depositor, and a positioner. The substrate holder is configured to hold a substrate. The tag depositor is configured to deposit tags on the substrate. The positioner is configured to position the tag depositor relative to the substrate. The positioner positions the tag depositor to deposit tags on the substrate in an array.
Abstract:
A system for determining a calibrated spectral measurement includes a tunable Fabry-Perot etalon, a detector, and a processor. The tunable Fabry-Perot etalon has a settable gap. The detector measures light intensity transmitted through the tunable Fabry-Perot etalon. The processor is configured to determine the calibrated spectral measurement. The calibrated spectral measurement is based at least in part on a measurement set of detected light intensities for a plurality of settable gaps and a reconstruction matrix. The reconstruction matrix is based at least in part on calibration measurements using multiple source wavelengths and multiple settable gaps.
Abstract:
A system for machine vision spectral imaging includes a spectral imager, a substrate, and a processor. The spectral imager comprises a Fabry-Perot etalon including a settable gap. The substrate has relative motion with respect to the spectral imager. The processor is configured to identify an object in a set of images from the spectral imager, wherein each of the set of images is associated with a specific gap of a full set of gaps, wherein the full set of gaps comprises a set of gaps setting the settable gap covering a complete range of the settable gap needed for a full spectral image of the object.
Abstract:
A system for spectral reading includes a plurality of LEDs, an interface, and a processor. The plurality of LEDs are disposed in a physical array. Light from the plurality of LEDs is enabled to be collimated at a Fabry-Perot etalon. The interface is configured to receive a gap calibration table and power characteristics of a plurality of LEDs. The processor is configured to determine an LED switch table. The LED switch table indicates a set of the plurality of LEDs with power above a threshold at a plurality of wavelengths. The processor is further configured to cause measurement of a sample using the gap calibration table and the LED switch table for a set of gap values and determine measurement results.
Abstract:
A system for determining a spectrum includes an interface and a processor. The interface is configured to receive a sample set of intensity data for an array of spatial locations and a set of spectral configurations. The processor is configured to determine a region of interest using the sample set of intensity data and determine a spectral peak for the region of interest.
Abstract:
A device for tunable optical filter includes a substrate, one or more piezos, a bottom mirror, and a top mirror. The one or more piezos are placed on the substrate. The one or more piezos have a piezo thickness. The bottom mirror is placed on the substrate. The bottom mirror has a bottom mirror thickness greater than the piezo thickness. The top mirror is placed on the bottom mirror. The top mirror is attached to the one or more piezos.
Abstract:
A system for verifying an item in a package using a database comprises a database and a verifier. A package producer provides the database with an identifier for one or more items each of a type, wherein the package producer produces a package, where the package includes the one or more items each of the type with an associated one or more selected tag identifiers that are placed in a location on an item of the one or more items. The verifier verifies the one or more items of the type using 1) the associated one or more selected tag identifiers as detected using a spectral signature or 2) a tag characteristic as detected using an imager, and 3) the identifier retrieved from the database.
Abstract:
An in vivo patient compliance apparatus includes a timing controller, a pulsed light source, and a detector. The timing controller controls the timing of the activation of the pulsed light source and the detector. The detector includes a single-photon avalanche diode (SPAD), a time integrator coupled to the SPAD, and an event counter coupled to the SPAD. The time integrator is configured to store charge in response to receiving a signal from the SPAD, and configured to stop storing charge in response to receiving a signal from the timing controller. The event counter is configured to store a preset amount of charge in response to receiving a signal from the SPAD.
Abstract:
A system for wide-range spectral measurement includes one or more broadband sources, an adjustable Fabry-Perot etalon, and a detector. The one or more broadband sources is to illuminate a sample, wherein the one or more broadband sources have a short broadband source coherence length. The adjustable Fabry-Perot etalon is to optically process the reflected light to extract spectral information with fine spectral resolution. The detector is to detect reflected light from the sample, wherein the reflected light is comprised of multiple narrow-band subsets of the illumination light having long coherence lengths and is optically processed using a plurality of settings for the adjustable Fabry-Perot etalon, and wherein the plurality of settings includes a separation of the Fabry-Perot etalon plates that is greater than the broadband source coherence length.